Chemistry: An Atoms First Approach
2nd Edition
ISBN: 9781305079243
Author: Steven S. Zumdahl, Susan A. Zumdahl
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 14, Problem 20E
Interpretation Introduction
Interpretation:
A buffer prepared by dissolving
Concept introduction:
A solution that resists a change in the
To determine: The equations depicting how the given buffer neutralizes the added
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
You have 100mL of 0.1M HCI in a beaker and you begin to add NaOH to the beaker.
Consider the following neutralization reaction, HCI + NaOH ==== NaCl + H₂O.
How would you expect pH to change as you add NaOH?
The pH would increase because [H3O*] would increase
O
The pH would increase because [H3O+] would decrease
The pH would decrease because [H3O+] would increase
O
The pH would decrease because [H3O+] would decrease
In a buffer solution prepared from 10 mL of 3.0 M Pyridine (C5H5N) added to 20 mL of 2.0 M Pyridine Hydrochloride (C5H5NHCl) and diluted to a total volume of 200 mL – Calculate each of the following:
The original pH of the buffer solution
The pH upon addition of 25.0 mL of 2.0 M NaOH to part a
The pH upon addition of 10.0 mL of 2.0 M HCl to part b
A student creates a solution of 0.20 M HC₂H3O2
solution.
Question #1: What is the pH of the solution
if the K₂ of the acid is 1.8x10-5? Show
calculation to support your answer.
Question # 2: What volume of 0.15 M
NaOH is needed to reach the equivalence
point and completely neutralize 30.0 mL of
the acid solution? Show calculation to
support your answer.
HC₂H3O2 + OH¹ C₂H3O₂1¹ + H₂O
Chapter 14 Solutions
Chemistry: An Atoms First Approach
Ch. 14 - What is meant by the presence of a common ion? How...Ch. 14 - Define a buffer solution. What makes up a buffer...Ch. 14 - Prob. 3RQCh. 14 - A good buffer generally contains relatively equal...Ch. 14 - Prob. 5RQCh. 14 - Prob. 6RQCh. 14 - Sketch the titration curve for a weak acid...Ch. 14 - Sketch the titration curve for a weak base...Ch. 14 - What is an acidbase indicator? Define the...Ch. 14 - Prob. 10RQ
Ch. 14 - What are the major species in solution after...Ch. 14 - Prob. 2ALQCh. 14 - Prob. 3ALQCh. 14 - Prob. 4ALQCh. 14 - Sketch two pH curves, one for the titration of a...Ch. 14 - Prob. 6ALQCh. 14 - Prob. 7ALQCh. 14 - You have a solution of the weak acid HA and add...Ch. 14 - The common ion effect for weak acids is to...Ch. 14 - Prob. 10QCh. 14 - Prob. 11QCh. 14 - Consider the following pH curves for 100.0 mL of...Ch. 14 - An acid is titrated with NaOH. The following...Ch. 14 - Consider the following four titrations. i. 100.0...Ch. 14 - Prob. 15QCh. 14 - Prob. 16QCh. 14 - How many of the following are buffered solutions?...Ch. 14 - Which of the following can be classified as buffer...Ch. 14 - A certain buffer is made by dissolving NaHCO3 and...Ch. 14 - Prob. 20ECh. 14 - Calculate the pH of each of the following...Ch. 14 - Calculate the pH of each of the following...Ch. 14 - Prob. 23ECh. 14 - Compare the percent ionization of the base in...Ch. 14 - Prob. 25ECh. 14 - Calculate the pH after 0.020 mole of HCl is added...Ch. 14 - Calculate the pH after 0.020 mole of NaOH is added...Ch. 14 - Calculate the pH after 0.020 mole of NaOH is added...Ch. 14 - Which of the solutions in Exercise 21 shows the...Ch. 14 - Prob. 30ECh. 14 - Calculate the pH of a solution that is 1.00 M HNO2...Ch. 14 - Calculate the pH of a solution that is 0.60 M HF...Ch. 14 - Calculate the pH after 0.10 mole of NaOH is added...Ch. 14 - Calculate the pH after 0.10 mole of NaOH is added...Ch. 14 - Calculate the pH of each of the following buffered...Ch. 14 - Prob. 36ECh. 14 - Calculate the pH of a buffered solution prepared...Ch. 14 - A buffered solution is made by adding 50.0 g NH4Cl...Ch. 14 - Prob. 39ECh. 14 - An aqueous solution contains dissolved C6H5NH3Cl...Ch. 14 - Prob. 41ECh. 14 - Prob. 42ECh. 14 - Consider a solution that contains both C5H5N and...Ch. 14 - Calculate the ratio [NH3]/[NH4+] in...Ch. 14 - Prob. 45ECh. 14 - Prob. 46ECh. 14 - Prob. 47ECh. 14 - Prob. 48ECh. 14 - Calculate the pH of a solution that is 0.40 M...Ch. 14 - Calculate the pH of a solution that is 0.20 M HOCl...Ch. 14 - Which of the following mixtures would result in...Ch. 14 - Prob. 52ECh. 14 - Prob. 53ECh. 14 - Calculate the number of moles of HCl(g) that must...Ch. 14 - Consider the titration of a generic weak acid HA...Ch. 14 - Sketch the titration curve for the titration of a...Ch. 14 - Consider the titration of 40.0 mL of 0.200 M HClO4...Ch. 14 - Consider the titration of 80.0 mL of 0.100 M...Ch. 14 - Consider the titration of 100.0 mL of 0.200 M...Ch. 14 - Prob. 60ECh. 14 - Lactic acid is a common by-product of cellular...Ch. 14 - Repeat the procedure in Exercise 61, but for the...Ch. 14 - Repeat the procedure in Exercise 61, but for the...Ch. 14 - Repeat the procedure in Exercise 61, but for the...Ch. 14 - Prob. 65ECh. 14 - In the titration of 50.0 mL of 1.0 M methylamine,...Ch. 14 - You have 75.0 mL of 0.10 M HA. After adding 30.0...Ch. 14 - A student dissolves 0.0100 mole of an unknown weak...Ch. 14 - Prob. 69ECh. 14 - Prob. 70ECh. 14 - Potassium hydrogen phthalate, known as KHP (molar...Ch. 14 - A certain indicator HIn has a pKa of 3.00 and a...Ch. 14 - Prob. 73ECh. 14 - Prob. 74ECh. 14 - Prob. 75ECh. 14 - Prob. 76ECh. 14 - Prob. 77ECh. 14 - Estimate the pH of a solution in which crystal...Ch. 14 - Prob. 79ECh. 14 - Prob. 80ECh. 14 - Prob. 81AECh. 14 - Prob. 82AECh. 14 - Tris(hydroxymethyl)aminomethane, commonly called...Ch. 14 - Prob. 84AECh. 14 - You have the following reagents on hand: Solids...Ch. 14 - Prob. 86AECh. 14 - Prob. 87AECh. 14 - What quantity (moles) of HCl(g) must be added to...Ch. 14 - Calculate the value of the equilibrium constant...Ch. 14 - The following plot shows the pH curves for the...Ch. 14 - Calculate the volume of 1.50 102 M NaOH that must...Ch. 14 - Prob. 92AECh. 14 - A certain acetic acid solution has pH = 2.68....Ch. 14 - A 0.210-g sample of an acid (molar mass = 192...Ch. 14 - The active ingredient in aspirin is...Ch. 14 - One method for determining the purity of aspirin...Ch. 14 - A student intends to titrate a solution of a weak...Ch. 14 - Prob. 98AECh. 14 - Prob. 99AECh. 14 - Consider 1.0 L of a solution that is 0.85 M HOC6H5...Ch. 14 - Prob. 101CWPCh. 14 - Consider the following acids and bases: HCO2H Ka =...Ch. 14 - Prob. 103CWPCh. 14 - Prob. 104CWPCh. 14 - Consider the titration of 100.0 mL of 0.100 M HCN...Ch. 14 - Consider the titration of 100.0 mL of 0.200 M...Ch. 14 - Prob. 107CWPCh. 14 - Prob. 108CPCh. 14 - A buffer is made using 45.0 mL of 0.750 M HC3H5O2...Ch. 14 - A 0.400-M solution of ammonia was titrated with...Ch. 14 - Prob. 111CPCh. 14 - Consider a solution formed by mixing 50.0 mL of...Ch. 14 - When a diprotic acid, H2A, is titrated with NaOH,...Ch. 14 - Consider the following two acids: In two separate...Ch. 14 - The titration of Na2CO3 with HCl bas the following...Ch. 14 - Prob. 116CPCh. 14 - A few drops of each of the indicators shown in the...Ch. 14 - Malonic acid (HO2CCH2CO2H) is a diprotic acid. In...Ch. 14 - A buffer solution is prepared by mixing 75.0 mL of...Ch. 14 - A 10.00-g sample of the ionic compound NaA, where...Ch. 14 - Prob. 121IPCh. 14 - Prob. 122MP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Methylammonium chloride is a salt of methylamine, CH3NH2. A 0.10 M solution of this salt has a pH of 5.82. a Calculate the value for the equilibrium constant for the reaction CH3NH3++H2OCH3NH2+H3O+ b What is the Kb value for methylamine? c What is the pH of a solution in which 0.450 mol of solid methylammonium chloride is added to 1.00 L of a 0.250 M solution of methylamine? Assume no volume change.arrow_forwardMethyl orange, HMO, is a common acid-base indicator. In solution it ionizes according to the equation: HMOaqH+aq+MO-aqredyellow If methyl orange is added to distilled water, the solution turns yellow. If 1 drop or two of 6 M HCl is added to the yellow solution, it turns red. If to that solution one adds a few drops of 6 M NaOH, the color reverts to yellow. a. Why does adding 6 M HCl to the yellow solution of methyl orange tend to cause the color to change to red? Note that in solution HCl exists as H+ and Cl- ions. b. Why does adding 6 M NaOH to the red solution tend to make it turn back to yellow? Note that in solution NaOH exists as Na+ and OH- ions. How does increasing OH- shift Reaction 3 in the discussion section? How would the resulting change in H+ affect the dissociation reaction of HMO?arrow_forwardIdentify each pair that could form a buffer. (a) HCl and CH3COOH (b) NaH2PO4 and Na2HPO4 (c) H2CO3 and NaHCO3arrow_forward
- Estimate the pH that results when the following two solutions are mixed. a) 50 mL of 0.3 M CH3COOH and 50 mL of 0.4 M KOH b) 100 mL of 0.3 M CH3COOH and 50 mL of 0.4 M NaOH c) 150 mL of 0.3 M CH3COOH and 100 mL of 0.3 M Ba(OH)2 d) 200 mL of 0.3 M CH3COOH and 100 mL of 0.3 M Ba(OH)2arrow_forwardWhich of these combinations is the best to buffer the pH at approximately 9? Explain your choice. CH3COOH/NaCH3COO HCl/NaCl NH3/NH4Clarrow_forwardUsing the diagrams shown in Problem 10-117, which of the solutions would have the greatest buffer capacity, that is, greatest protection against pH change, when the following occurs? a. A strong acid is added to the solution. b. A strong base is added to the solution.arrow_forward
- . A buffered solution is prepared containing acetic acid, HC2H3O2, and sodium acetate, NaC2H3O2, both at 0.5 M. Write a chemical equation showing how this buffered solution would resist a decrease in its pH if a few drops of aqueous strong acid HCI solution were added to it. Write a chemical equation showing how this buffered solution would resist an increase in its pH if a few drops of aqueous strong base NaOH solution were added to it.arrow_forwardBriefly describe how a buffer solution can control the pH of a solution when strong acid is added and when strong base is added. Use NH3/NH4Cl as an example of a buffer and HCl and NaOH as the strong acid and strong base.arrow_forwardWrite an equation to describe the proton transfer that occurs when each of these acids is added to water. (a) HCO3 (b) HCl (c) CH3COOH (d) HCNarrow_forward
- Explain the difference between a strong acid and a weak acid.arrow_forwardIdentify the buffer system(s)the conjugate acidbase pair(s)present in a solution that contains equal molar amounts of the following: a. HF, KC2H3O2, NaC2H3O2, and NaF b. HNO3, NaOH, H3PO4, and NaH2PO4arrow_forwardA solution of weak base is titrated to the equivalence point with a strong acid. Which one of the following statements is most likely to be correct? a The pH of the solution at the equivalence point is 7.0. b The pH of the solution is greater than 13.0. c The pH of the solution is less than 2.0. d The pH of the solution is between 2.0 and 7.0. e The pH of the solution is between 7.0 and 13.0. The reason that best supports my choosing the answer above is a Whenever a solution is titrated with a strong acid, the solution will be very acidic. b Because the solution contains a weak base and the acid (titrant) is used up at the equivalence point, the solution will be basic. c Because the solution contains the conjugate acid of the weak base at the equivalence point, the solution will be acidic.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Acid-Base Titration | Acids, Bases & Alkalis | Chemistry | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=yFqx6_Y6c2M;License: Standard YouTube License, CC-BY