Chlorine atoms contribute to the destruction of the Earth’s ozone layer by the following sequence of reactions: Cl + O 3 → ClO + O 2 ClO + O → Cl + O 2 where the O atoms in the second step come from the decomposition of ozone by sunlight: O 3 (g) → O(g) + O 2 (g) What is the net equation on summing these three equations? Why does this lead to ozone loss in the stratosphere? What is the role played by Cl in this sequence of reactions? What name is given to species such as ClO?
Chlorine atoms contribute to the destruction of the Earth’s ozone layer by the following sequence of reactions: Cl + O 3 → ClO + O 2 ClO + O → Cl + O 2 where the O atoms in the second step come from the decomposition of ozone by sunlight: O 3 (g) → O(g) + O 2 (g) What is the net equation on summing these three equations? Why does this lead to ozone loss in the stratosphere? What is the role played by Cl in this sequence of reactions? What name is given to species such as ClO?
Chlorine atoms contribute to the destruction of the Earth’s ozone layer by the following sequence of reactions:
Cl + O3 → ClO + O2
ClO + O → Cl + O2
where the O atoms in the second step come from the decomposition of ozone by sunlight:
O3(g) → O(g) + O2(g)
What is the net equation on summing these three equations? Why does this lead to ozone loss in the stratosphere? What is the role played by Cl in this sequence of reactions? What name is given to species such as ClO?
need help please and thanks dont understand only need help with C-F
Learning Goal:
As discussed during the lecture, the enzyme HIV-1 reverse transcriptae (HIV-RT) plays a significant role for the HIV virus and is an important drug target. Assume a concentration [E] of 2.00 µM (i.e. 2.00 x 10-6 mol/l) for HIV-RT. Two potential drug molecules, D1 and D2, were identified, which form stable complexes with the HIV-RT.
The dissociation constant of the complex ED1 formed by HIV-RT and the drug D1 is 1.00 nM (i.e. 1.00 x 10-9). The dissociation constant of the complex ED2 formed by HIV-RT and the drug D2 is 100 nM (i.e. 1.00 x 10-7).
Part A - Difference in binding free eenergies
Compute the difference in binding free energy (at a physiological temperature T=310 K) for the complexes. Provide the difference as a positive numerical expression with three significant figures in kJ/mol.
The margin of error is 2%.
Part B - Compare difference in free energy to the thermal…
need help please and thanks dont understand only need help with C-F
Learning Goal:
As discussed during the lecture, the enzyme HIV-1 reverse transcriptae (HIV-RT) plays a significant role for the HIV virus and is an important drug target. Assume a concentration [E] of 2.00 µM (i.e. 2.00 x 10-6 mol/l) for HIV-RT. Two potential drug molecules, D1 and D2, were identified, which form stable complexes with the HIV-RT.
The dissociation constant of the complex ED1 formed by HIV-RT and the drug D1 is 1.00 nM (i.e. 1.00 x 10-9). The dissociation constant of the complex ED2 formed by HIV-RT and the drug D2 is 100 nM (i.e. 1.00 x 10-7).
Part A - Difference in binding free eenergies
Compute the difference in binding free energy (at a physiological temperature T=310 K) for the complexes. Provide the difference as a positive numerical expression with three significant figures in kJ/mol.
The margin of error is 2%.
Part B - Compare difference in free energy to the thermal…
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell