(a)
Interpretation:
The rate law has to be determined for the given reaction.
Concept introduction:
Rate law: It is an equation that related to the dependence of the
For a reaction,
Where,
A and B are reactants
a and b are
Where,
k is the rate constant
Rate constant: Rate constant is an expression used to relate the rate of a reaction to the concentration of reactants participating in the reaction.
(a)
Answer to Problem 74GQ
The rate law for the given reaction is
Explanation of Solution
Given information,
The reaction is
Calculate the value of
Therefore, the rate law of the given reaction is
(b)
Interpretation:
The value of rate has to be determined for the given reaction.
Concept introduction:
Rate law: It is an equation that related to the dependence of the reaction rate on the concentration of each substrate (reactants).
For a reaction,
Where,
A and B are reactants
a and b are stoichiometric coefficients
Where,
k is the rate constant
Rate constant: Rate constant is an expression used to relate the rate of a reaction to the concentration of reactants participating in the reaction.
(b)
Answer to Problem 74GQ
The value of rate constant is
Explanation of Solution
Given information,
The reaction is
Therefore, the rate law of the given reaction is
Calculate the value of rate constant from experiment 1
Therefore, the value of rate constant is
(c)
Interpretation:
The value of rate has to be determined for the given reaction.
Concept introduction:
Rate law: It is an equation that related to the dependence of the reaction rate on the concentration of each substrate (reactants).
For a reaction,
Where,
A and B are reactants
a and b are stoichiometric coefficients
Where,
k is the rate constant
Rate constant: Rate constant is an expression used to relate the rate of a reaction to the concentration of reactants participating in the reaction.
Rate constant for a particular reaction is always constant. It does not depend on the concentration of the reactant.
(c)
Answer to Problem 74GQ
The value of rate constant is
Explanation of Solution
Given information,
The reaction is
Rate constant for a particular reaction is always constant. It does not depend on the concentration of the reactant.
Hence the rate constant of the given reaction is same the rate constant of
Therefore, the value of rate constant is
Want to see more full solutions like this?
Chapter 14 Solutions
Chemistry & Chemical Reactivity
- (a) For a reaction, A + B > Product, the rate law is given by,Rate = k [A]1 [B]2 . What is the order of reaction?(b) Write the unit of rate constat ‘k’ for the first order reaction.arrow_forwardThe reaction 2 NO(g) + Cl2(g) → 2 NOCl has the following rate law: Rate = k[NO]2 [Cl2]. The initial speed of the reaction was found to be 5.72×10‒6 M/s when the reaction was carried out at 25 °C with initial concentrations of 0.500 M NO and 0.250 M Cl2. What is the value of k?(a) 1.83×10‒4(b) 1.09×104(c) 9.15×10‒5(d) 5.72×10‒6arrow_forwardThe following data was obtained from the reaction: (a) Determine the rate law. (b) Calculate the rate constant. (c) Calculate the initial rate, if [NO2~] = 0.1 M and [NH4+] = 0.1 Marrow_forward
- (a) For a reaction A + B —> P, the rate is given by Rate = k[A]2 [B](i) How is the rate of reaction affected if the concentration of A is doubled?(ii) What is the overall order of reaction if B is present in large excess?(b) A first order reaction takes 23.1 minutes for 50% completion. Calculate the time required for 75% completion of this reaction.(Given: log 2 = 0.301, log 3 = 0.4771, log 4 = 0.6021)arrow_forwardConsider the following reaction: 4 HBr(g) + O2(g) 2 H2O(g) + 2 Br2(g)(a) The rate law for this reaction is first order in HBr(g) and first order in O2(g). What is the rate law for this reaction?(b) If the rate constant for this reaction at a certain temperature is 8.80e+03, what is the reaction rate when [HBr(g)] = 0.00429 M and [O2(g)] = 0.00758 M?Rate = _______ M/s.(c) What is the reaction rate when the concentration of HBr(g) is doubled, to 0.00858 M while the concentration of O2(g) is 0.00758 M?Rate = _______ M/sarrow_forwardConsider the reaction A + B ¡ C + D. Is each of the following statements true or false? (a) The rate law for the reaction must be Rate = k3A43B4. (b) If the reaction is an elementary reaction, the rate law is second order. (c) If the reaction is an elementary reaction, the rate law of the reverse reaction is first order. (d) The activation energy for the reverse reaction must be greater than that for the forward reaction.arrow_forward
- The reaction O₂(g) + 2 NO(g) → 2 NO₂(g) was studied at a certain temperature with the following results: (a) What is the rate law for this reaction? O Ratek [0₂(9)] [NO(g)] O Ratek [0₂(9)]² [NO(g)] O Rate = k [0₂(9)] [NO(g)]² O Ratek [0₂(9)]² [NO(g)]² O Ratek [0₂(9)] [NO(g)]³ O Rate = k [O₂(g)]* [NO(g)] (b) What is the value of the rate constant? Experiment [0₂(9)] (M) 0.0235 0.0235 0.0470 0.0470 [NO(g)] (M) 0.0235 0.0470 0.0235 0.0470 Rate (M/S) 0.158 0.633 0.317 1.27 (c) What is the reaction rate when the concentration of O₂(g) is 0.0318 M and that of NO(g) is 0.0649 M if the temperature is the same as that used to obtain the data shown above?arrow_forwardConsider the following reaction: 2 NO(g) + 2 H2(g) N2(g) + 2 H2O(g) (a) The rate law for this reaction is second order in NO(g) and first order in H2(g). What is the rate law for this reaction?(b) If the rate constant for this reaction at a certain temperature is 79200, what is the reaction rate when [NO(g)] = 0.0852 M and [H2(g)] = 0.137 M?Rate =____ M/s.(c) What is the reaction rate when the concentration of NO(g) is doubled, to 0.170 M while the concentration of H2(g) is 0.137 M?Rate = ____ M/sarrow_forwardThe decomposition of phosphine, a very toxic gas, forms phosphorus and hydrogen in the following reaction: 4PH3(g) -> P4(g)+ 6H2(g) (a) Express the rate of the reaction with respect to each of the reactants and products.(b) if the instantaneous rate of the reaction with respect to PH3 is 0.34 M•S^-1 ,what is the instantaneous rate of the reaction?arrow_forward
- The following kinetic data are collected for the initial rates of a reaction 2 X + Z→ products: Experiment [X ]o(M) [Z]o(M) Rate (M/s) 0.25 0.25 4.0 x 10! 0.50 0.50 3.2 x 102 0.50 0.75 7.2 x 102 (a) What is the rate law for this reaction? (b) What is the value of the rate constant with proper units? (c) What is the reaction rate when the initial concentration of X is 0.75 M and that of Z is 1.25 M? 2. 3.arrow_forwardThe reaction O₂(g) + 2 NO(g) → 2 NO₂(g) was studied at a certain temperature with the following results: (a) What is the rate law for this reaction? O Rate = k [0₂(g)] [NO(g)] O Rate = k [0₂(g)]² [NO(g)] O Rate = k [0₂(g)] [NO(g)]² O Rate = k [O₂(g)]² [NO(g)]²2 O Rate = k [O₂(g)] [NO(g)]³ O Rate = k [0₂(g)]4 [NO(g)] (b) What is the value of the rate constant? Experiment M/s 1 2 3 4 [0₂(g)] (M) 0.0231 0.0231 0.0462 0.0462 [NO(g)] (M) 0.0231 0.0462 0.0231 0.0462 Rate (M/s) 0.112 0.448 0.224 0.896 (c) What is the reaction rate when the concentration of O₂(g) is 0.0437 M and that of NO(g) is 0.0567 M if the temperature is the same as that used to obtain the data shown above?arrow_forwardAcetone is one of the most important solvents in organic chemistry. It is used to dissolve everything from fats and waxes to airplane glue and nail polish. At high temperatures, it decomposes in a first-order process to methane and ketene (CH2═C═O). At 600°C, the rate constant is 8.7 × 10−3 s−1. (a) What is the half-life of the reaction? Give your answer in scientific notation. (b) How long does it take for 38% of a sample of acetone to decompose? (c) How long does it take for 81% of a sample of acetone to decompose? Give your answer in scientific notation.arrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co