The acid-catalyzed iodination of acetone
CH3COCH3(aq) + I2(aq) → CH3COCH2I(aq) + HI(aq)
is a common laboratory experiment used in general chemistry courses to teach the method of initial rates. The reaction is followed spectrophotometrically by the disappearance of the color of iodine in the solution. The following data (J. P. Birk and D. L Walters, Journal of Chemical Education, Vol. 69, p. 585, 1992) were collected at 23 °C for this reaction.
Determine the rate law for this reaction.
Interpretation:
The rate law should be determined for the given chemical reaction.
Concept Introduction:
Rate law: It is generally the rate equation that consists of the reaction rate with the concentration or the pressures of the reactants and constant parameters.
Rate constant: The rate constant for a chemical reaction is the proportionality term in the chemical reaction rate law which gives the relationship between the rate and the concentration of the reactant present in the chemical reaction.
Answer to Problem 86IL
The rate law for the given reaction is as follows,
Explanation of Solution
The rate law is obtained by first determining the order of each reactant present in the given reaction. The order of each reactant is obtained by using the given set of concentration and the rate data as follows,
The order for
The order for
Similarly, the order for
The order for
Similarly the order for
The order for
Therefore, the rate law for the given reaction is as follows,
The rate law for the given reaction was determined.
Want to see more full solutions like this?
Chapter 14 Solutions
Chemistry & Chemical Reactivity
Additional Science Textbook Solutions
Chemistry: Structure and Properties (2nd Edition)
Chemistry
Introductory Chemistry (5th Edition) (Standalone Book)
Essential Organic Chemistry (3rd Edition)
Organic Chemistry - Standalone book
- List at least four experimentally determined parameters that you, an experimenter, can define when exploring the hydrolysis of ethyl benzoate by aqueous sodium hydroxide.arrow_forwardThe rate of photodecomposition of the herbicide piclo- ram in aqueous systems was determined by exposure to sunlight for a number of days. One such experiment produced the following results. (Data from R.T. Hedlun and C.R. Youngson, “The Rates of Photodecomposition of Picloram in Aqueous Systems," Fate of Organic Pesticides in tbe Aquatic Environment, Advances in Chemistry Series, #111, American Chemical Society (1972), 159—172.) Exposure Time, t (days) [Pidoram] (mol L_1) 0 4.14 X 10-6 7 3.70 X 10-6 14 3.31 X 10-6 21 2.94 X 10~6 28 2.61 X 10~6 35 2.30 X 10-6 42 2.05 X 10-6 49 1.82 X 10"6 56 1.65 X 10-6 Determine the order of reaction, the rate constant, and the half-life for the photodecomposition of picloram.arrow_forwardDefine stability from both a kinetic and thermodynamic perspective. Give examples to show the differences in these concepts.arrow_forward
- What is the difference between the integrated and differential forms of the rate law?arrow_forwardThe color change accompanying the reaction of phenolphthalein with strong base is illustrated below. The change in concentration of the dye can be followed by spectrophotometry (Section 4.9), and some data collected by that approach are given below. The initial concentrations were [phenolphthalein] = 0.0050 mol/L and [OH] = 0.61 mol/L. (Data are taken from review materials for kinetics at chemed.chem.purdue.edu.) (For more details on this reaction see L Nicholson, Journal of Chemical Education, Vol. 66, p. 725, 1989.) (a) Plot the data above as [phenolphthalein] versus time, and determine the average rate from t = 0 to t = 15 seconds and from t = 100 seconds to t = 125 seconds. Does the rate change? If so, why? (b) Use a graphical method to determine the order of the reaction with respect to phenolphthalein. Write the rate law, and determine the rate constant. (c) What is the half-life for the reaction?arrow_forwardFor the past 10 years, the unsaturated hydrocarbon 1, 3-butadiene (CH2 = CH - CH = CH2) has ranked 38th among the top 50 industrial Chemicals. It is used primarily for the manufacture of synthetic rubber. An isomer exists also as cyclobutene: The isomerization of cyclobutene to butadiene is first-order and the rate constant has been measured as 2.0104s1 at 150 C in a 0.53-L ?ask. Determine the partial pressure of cyclobutene and its concentration after 30.0 minutes if an isomerization reaction is carried out at 150 C with an initial pressure of 55 torr.arrow_forward
- The hydrolysis of the sugar sucrose to the sugars glucose and fructose, C12H22O11+H2OC6H12O6+C6H12O6 follows a first-order rate equation for the disappearance of sucrose: Rate =k[C12H22O11] (The products of the reaction, glucose and fructose, have the same molecular formulas but differ in the arrangement of the atoms in their molecules.) (a) In neutral solution, k=2.11011s1 at 27 C and 8.51011s1 at 37 C. Determine the activation energy, the frequency factor, and the rate constant for this equation at 47 C (assuming the kinetics remain consistent with the Arrhenius equation at this temperature). (b) When a solution of sucrose with an initial concentration of 0.150 M reaches equilibrium, the concentration of sucrose is 1.65107M . How long will it take the solution to reach equilibrium at 27 C in the absence of a catalyst? Because the concentration of sucrose at equilibrium is so low, assume that the reaction is irreversible. (c) Why does assuming that the reaction is irreversible simplify the calculation in pan (b)?arrow_forwardWhat are the rate laws of mechanisms 1 and 2 for oscillating reactions if the second reactions were the rate-determining steps?arrow_forwardThe thermal decomposition of diacetylene, C4H2, was studied at 950 C. Use the following data (K. C. Hou and H. B. Palmer, Journal of Physical Chemistry. Vol. 60, p. 858, 1965) to determine the order of the reaction.arrow_forward
- Explain why half-lives are not normally used to describe reactions other than first order.arrow_forwardA drug decomposes in the blood by a first-order process. A pill containing 0.500 g of the active ingredient reaches its maximum concentration of 2.5 mg/ 100 mL of blood. If the half-life of the active ingredient is 75 min, what is its concentration in the blood 2.0 h after the maximum concentration has been reached?arrow_forwardLabel the elementary processes for the reaction between H2 and O2 see section 20.7 as initiation, propagation, branching, or termination reactions.arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning