Interpretation:
The second-order rate dependence for
Concept Introduction:
Rate order: It is represented by the exponential term of the respective reactant present in the rate law and the overall order of the reaction is the sum of all the exponents of all reactants present in the
Rate law: It is generally the rate equation that consists of the reaction rate with the concentration or the pressures of the reactants and constant parameters.
Rate constant: It is the proportionality term in the chemical reaction rate law which gives the relationship between the rate and the concentration of the reactant present in the chemical reaction.
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
Chemistry & Chemical Reactivity
- A student set up an experiment for six different trials of the reaction between 1.00-M aqueous acetic acid, CH3COOH, and solid sodium hydrogen carbonate, NaHCO3. CH3COOH(aq) + NaHCO3(s) NaCH3CO2(aq) + CO2(g) + H2O() The volume of acetic acid was kept constant, but the mass of sodium bicarbonate increased with each trial. The results of the tests are shown in the figure. (a) In which trial(s) is the acetic acid the limiting reactant? (b) In which trial(s) is sodium bicarbonate the limiting reactant? (c) Explain your reasoning in parts (a) and (b).arrow_forwardFor each of the changes listed will the rate of the following chemical reaction increase, decrease, or remain the same? Cu(s)+H2SO4(aq)CuSO4(aq)+H2(g) a. the concentration of H2SO4 is increased b. the copper is ground into a powder c. the mixture is stirred rapidly d. the temperature of the solution is increasedarrow_forwardHow do chemists envision reactions taking place in terms of the collision model for reactions? Give an example of a simple reaction and how you might envision the reaction’s taking place by means of a collision between the molecules.arrow_forward
- Substances that poison a catalyst pose a major concern for many engineering designs, including those for catalytic converters. One design option is to add materials that react with potential poisons before they reach the catalyst. Among the commonly encountered catalyst poisons are silicon and phosphorus, which typically form phosphate or silicate ions in the oxidizing environment of an engine. Group 2 elements are added to the catalyst to react with these contaminants before they reach the working portion of the catalytic converter. If estimates show that a catalytic converter will be exposed to 625 g of silicon during its lifetime, what mass of beryllium would need to be included in the design?arrow_forwardThe characteristics of four reactions, each of which involves only two reactants, are given. For each of the following pairs of the preceding reactions, compare the reaction rates when the two reactants are first mixed by indicating which reaction is faster. a. 1 and 2 b. 1 and 3 c. 1 and 4 d. 2 and 3arrow_forwardClassify each of the reactions according to one of the four reaction types summarized in Table 18.1. (a) Fe2O3(s) + 2 Al(s) 2 Fe(s) + Al2O3(s) rH = 851.5 kj/mol-rxn rS = 375.2 J/K mol-rxn (b) N2(g) + 2 O2(g) 2 NO2(g) rH = 66.2 kJ/mol-rxn rS = 121.6 J/K mol-rxn TABLE 18.1 Predicting Whether a Reaction Will Be Spontaneous Under Standard Conditionsarrow_forward
- Indicate to which of the following types of reactions each of the statements listed applies: combination, decomposition, displacement, exchange, and combustion. More than one answer is possible for a given statement. a. An element may be a reactant. b. An element may be a product. c. A compound may be a reactant. d. A compound may be a product.arrow_forwardClassify each of the following reactions as (1) a redox reaction (2) a nonredox reaction or (3) cant classify because of insufficient information. a. A combination reaction in which one reactant is an element b. A decomposition reaction in which the products are all elements c. A decomposition reaction in which one of the products is an element d. A displacement reaction in which both of the reactants are compoundsarrow_forward. What does the activation energy for a reaction represent? How is the activation energy related to whether a collision between molecules is successful?arrow_forward
- . Explain what it means that a reaction has reached a state of chemical equilibrium. Explain why equilibrium is a dynamic state: Does a reaction really “stop” when the system reaches a state of equilibrium? Explain why, once a chemical system has reached equilibrium, the concentrations of all reactants remain constant with time. Why does this constancy of concentration not contradict our picture of equilibrium as being dynamic? What happens to the rates of the forward and reverse reactions as a system proceeds to equilibrium from a starting point where only reactants are present?arrow_forwardThe label on a bottle of 3% (by volume) hydrogen peroxide, H2O2, purchased at a grocery store, states that the solution should be stored in a cool, dark place. H2O2decomposes slowly over time, and the rate of decomposition increases with an increase in temperature and in the presence of light. However, the rate of decomposition increases dramatically if a small amount of powdered MnO- is added to the solution. The decomposition products are H2O and O2. MnO2 is not consumed in the reaction. Write the equation for the decomposition of H2O2. What role does MnO2 play? In the chemistry lab, a student substituted a chunk of MnO2 for the powdered compound. The reaction rate was not appreciably increased. WTiat is one possible explanation for this observation? Is MnO2 part of the stoichiometry of the decomposition of H2O2?arrow_forwardGo to the PhET Reactions and change to Angled shot to see the difference. (a) What happens when the angle of the collision is changed? (b) Explain how this is relevant to rate of reaction.arrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning