The oxidation of iodide ion by the hypochlorite ion in the presence of hydroxide ions
I−(aq) + ClO−(aq) → IO−(aq) + Cl−(aq)
was studied at 25 °C, and the following initial rates data (Y. Chia and R. E. Connick, Journal of
- (a) Determine the rate law for this reaction.
- (b) One mechanism that has been proposed for this reaction is the following:
Show that the rate law predicted by this mechanism matches the experimentally determined rate law in part a. (Note that when writing the expression for K the equilibrium constant, [H2O] is not involved. See Chapter 15.)
(a)
Interpretation:
The rate law of the given reaction should be given.
Concept Introduction:
Rate law: It is generally the rate equation that consists of the reaction rate with the concentration or the pressures of the reactants and constant parameters.
Rate constant: The rate constant for a chemical reaction is the proportionality term in the chemical reaction rate law which gives the relationship between the rate and the concentration of the reactant present in the chemical reaction.
Answer to Problem 85IL
The rate law for the given reaction is as follows,
Explanation of Solution
The rate law is obtained by first determining the order of each reactant present in the given reaction. The order of each reactant is obtained by using the given set of concentration and the rate data as follows,
The order for
The order for
Similarly, the order for
The order for
Similarly the order for
Therefore, the rate law for the given reaction is as follows,
(b)
Interpretation:
The rate law predicted by the mechanism matches the experimentally determined rate law should be shown.
Concept Introduction:
Rate order: The order of each reactant in a reaction is represented by the exponential term of the respective reactant present in the rate law and the overall order of the reaction is the sum of all the exponents of all reactants present in the chemical reaction. The order of the reaction is directly proportional to the concentration of the reactants.
Rate law: It is generally the rate equation that consists of the reaction rate with the concentration or the pressures of the reactants and constant parameters.
Rate constant: The rate constant for a chemical reaction is the proportionality term in the chemical reaction rate law which gives the relationship between the rate and the concentration of the reactant present in the chemical reaction.
Explanation of Solution
The rate for the rate determining step is
Now,
Therefore, it clears that the rate determined from experimental data matches with the above obtained expression derived from elementary steps.
Want to see more full solutions like this?
Chapter 14 Solutions
Chemistry & Chemical Reactivity
Additional Science Textbook Solutions
Principles of General, Organic, Biological Chemistry
General Chemistry: Atoms First
Chemistry by OpenStax (2015-05-04)
Living By Chemistry: First Edition Textbook
- The following rate constants were obtained in an experiment in which the decomposition of gaseous N2O; was studied as a function of temperature. The products were NO, and NO,. Temperature (K) 3.5 x 10_i 298 2.2 x 10"4 308 6.8 X IO-4 318 3.1 x 10 1 328 Determine Etfor this reaction in kj/mol.arrow_forwardDefine stability from both a kinetic and thermodynamic perspective. Give examples to show the differences in these concepts.arrow_forward11.44 A possible reaction for the degradation of the pesticide DDT to a less harmful compound was simulated in the laboratory. The reaction was found to be first order, with k = 4.0 X 10_H s"' at 25°C. What is the half-life for the degradation of DDT in this experiment, in years?arrow_forward
- Some bacteria are resistant to the antibiotic penicillin because they produce penicillinase, an enzyme with a molecular weight of 3104 g/mol that converts penicillin into inactive molecules. Although the kinetics of enzyme-catalyzed reactions can be complex, at low concentrations this reaction can be described by a rate equation that is first order in the catalyst (penicillinase) and that also involves the concentration of penicillin. From the following data: 1.0 L of a solution containing 0.15 g ( 0.15106 g) of penicillinase, determine the order of the reaction with respect to penicillin and the value of the rate constant. [Penicillin] (M) Rate (mol/L/min) 2.0106 1.01010 3.0106 1.51010 4.0106 2.01010arrow_forwardThe hydrolysis of the sugar sucrose to the sugars glucose and fructose, C12H22O11+H2OC6H12O6+C6H12O6 follows a first-order rate equation for the disappearance of sucrose: Rate =k[C12H22O11] (The products of the reaction, glucose and fructose, have the same molecular formulas but differ in the arrangement of the atoms in their molecules.) (a) In neutral solution, k=2.11011s1 at 27 C and 8.51011s1 at 37 C. Determine the activation energy, the frequency factor, and the rate constant for this equation at 47 C (assuming the kinetics remain consistent with the Arrhenius equation at this temperature). (b) When a solution of sucrose with an initial concentration of 0.150 M reaches equilibrium, the concentration of sucrose is 1.65107M . How long will it take the solution to reach equilibrium at 27 C in the absence of a catalyst? Because the concentration of sucrose at equilibrium is so low, assume that the reaction is irreversible. (c) Why does assuming that the reaction is irreversible simplify the calculation in pan (b)?arrow_forwardWhen nitrogen dioxide reacts with carbon monoxide, the following reaction occurs. Â NO2(g)+CO(g)NO(g)+CO2(g)The following data are obtained at a certain temperature: (a) What is the order of the reaction with respect to NO2, CO, and overall? (b) Write the rate expression of the reaction. (c) Calculate k for the reaction. (d) When [ NO2 ]=0.421Mand [ CO ]=0.816M, what is the rate of the reaction at the temperature of the experiments?arrow_forward
- The thermal decomposition of diacetylene, C4H2, was studied at 950 C. Use the following data (K. C. Hou and H. B. Palmer, Journal of Physical Chemistry. Vol. 60, p. 858, 1965) to determine the order of the reaction.arrow_forwardWhen boron trifluoride reacts with ammonia, the following reaction occurs: BF3(g)+NH3(g)BF3NH3(g)The following data are obtained at a particular temperature: (a) What is the order of the reaction with respect to BF3, NH3, and overall? (b) Write the rate expression for the reaction. (c) Calculate k for the reaction. (d) When [ BF3 ]=0.533M and NH3=0.300M, what is the rate of the reaction at the temperature of the experiment?arrow_forwardThe reaction NO(g) + O,(g) — NO,(g) + 0(g) plays a role in the formation of nitrogen dioxide in automobile engines. Suppose that a series of experiments measured the rate of this reaction at 500 K and produced the following data; [NO] (mol L ’) [OJ (mol L 1) Rate = -A[NO]/Af (mol L_1 s-1) 0.002 0.005 8.0 X 10"'7 0.002 0.010 1.6 X 10-'6 0.006 0.005 2.4 X IO-'6 Derive a rate law for the reaction and determine the value of the rate constant.arrow_forward
- The frequency factor A is 6.31 108 L mol1 s1 and the activation energy is 10. kJ/mol for the gas-phase reaction NO(g)+O3(g)NO2(g)+O2(g) which is important in the chemistry of stratospheric ozone depletion. (a) Calculate the rate constant for this reaction at 370. K. (b) Assuming that this is an elementary reaction, calculate the rate of the reaction at 370. K if [NO] = 0.0010 M and [O3] = 0.00050 M.arrow_forwardThe label on a bottle of 3% (by volume) hydrogen peroxide, H2O2, purchased at a grocery store, states that the solution should be stored in a cool, dark place. H2O2decomposes slowly over time, and the rate of decomposition increases with an increase in temperature and in the presence of light. However, the rate of decomposition increases dramatically if a small amount of powdered MnO- is added to the solution. The decomposition products are H2O and O2. MnO2 is not consumed in the reaction. Write the equation for the decomposition of H2O2. What role does MnO2 play? In the chemistry lab, a student substituted a chunk of MnO2 for the powdered compound. The reaction rate was not appreciably increased. WTiat is one possible explanation for this observation? Is MnO2 part of the stoichiometry of the decomposition of H2O2?arrow_forwardBacteria cause milk to go sour by generating lactic acid. Devise an experiment that could measure the activation energy for the production of lactic acid by bacteria in milk. Describe how your experiment will provide the information you need to determine this value. What assumptions must be made about this reaction?arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning