Interpretation: The rate of decomposition at
Concept Introduction:
The
The raise in molar concentration of product of a reaction per unit time or decrease in molarity of reactant per unit time is called rate of reaction and is expressed in units of
Integrated rate law for first order reaction:
Consider A as substance, that gives the product based on the equation,
Where a= stoichiometric co-efficient of reactant A.
Consider the reaction has first-order rate law,
The integrated rate law equation can be given as,
The above expression is called integrated rate law for first order reaction.
Trending nowThis is a popular solution!
Chapter 14 Solutions
Chemistry & Chemical Reactivity
- Classify each of the following as either a substitution, elimination, or addition reaction. CH3 CH3 CH3-CH-CH2-C-CH3 + Br₂ CH3 CH3 CH3 CH3-C-CH2-C-CH3 + HBr substitution ○ elimination Br CH3 CHI CHO CHA HO CH он Cl CH3-CH2-CH-CH2-CH3 CH₂ DBU H* - CHI CHO CH3 + H2O Ӧ CH3 CH3-CH2-CH=CH-CH3 + HCI OH Pd/C CH3 CH3-CH-CH2-C-CH3 CH3 H C-CH2-CH3 + HO-CH3 addition substitution elimination ○ addition ○ substitution ○ elimination O addition substitution O elimination addition substitution O elimination addition CH3 C-CH3 + H2 CH3 CH3-O-CH-CH2-CH3 Онarrow_forward=> (8 pts) Use retrosynthetic analysis (that is, use retrosynthetic arrows as was done in class) to suggest a synthesis route for the transformation shown below. Sear bonsarrow_forwardd) 1. Complete the following reactions; all reactions are at room temperature. No heat is involved here. Show Major product only. Indicate the type of mechanism: SN1 or SN2. (1 pt each) a) Br + b) Br e) OH CH3DH + H20 он HCJ Zn Cl₂ OH + HCI 20 C12 + H-Brarrow_forward
- What is the IUPAC name for the compound shown? LOH IUPAC name: BIU X2 x²arrow_forwardDon't used Ai solutionarrow_forward2. Write the IUPAC name of the major product that would be obtained from the dehydration of 3,5-dimethylcyclohexanol. What is the type mechanism of the reaction (E1, E2, SN1, SN2)? Draw the detailed mechanism of the reaction. (2.5 pts) 3. In Experiment 8, You synthesized n-butyl bromide using sodium bromide, sulfuric acid and butyl alcohol. (2.5 pts) a. Write the detailed mechanism of this reaction indicating what type of mechanism is this reaction. b. What will happen to the rate of the reaction if NaCl was used instead of NaBr? c. What will be the mechanism of the reaction if t-butyl alcohol is used with NaBr in presence of sulfuric acid? Draw detailed mechanism.arrow_forward
- In each row of the table below, select the stronger acid or base, as instructed. The most acidic H atom in each acid has been highlighted. Select the stronger acid: Select the stronger acid: Select the stronger base: Select the stronger base: H H Tx NH equally acidic equally acidic H equally basic equally basicarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardUse the information in the pk, table below to determine which side of the equilibrium is favored for each of the reactions in the second table. acid pk, acid PK CHA CHÍNH, 36 CH₂SH OH 9 50 45 CH2=CH2 19 15.9 CH₂OH 15.7 10.3 .OH 10.0 4.8 он OH CH₂OH₂ -2.2 -7.2 снон, + i + OH + CH4 Equilibrium Equation CH₂OH + io OH CH3NH + CH2=CH2 CH3NH₂ + он + + H₁₂-C CH2=CH 0 O Left Favored Equal Right Favored о 0 0arrow_forward
- Classify each of the following as either a substitution, elimination, or addition reaction. Br K* -OC(CH₁) + Cl₂ + HCI + C½₂ + NH3 + HBr + HOT H₂N + HO H HO substitution O elimination addition substitution ○ elimination addition substitution elimination addition O substitution O elimination O addition 000 substitution O elimination additionarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardplease redraw it out circling each bondarrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning