Concept explainers
(a)
Interpretation:
The given phenol has to be named.
Concept Introduction:
When one hydrogen atoms are replaced by a hydroxyl group in benzene is known as phenol. If the other hydrogen atoms present in phenol are replaced by other atoms or groups are known as phenol derivatives.
Phenol derivative with one substituent:
IUPAC system of naming phenol derivative considers phenol to be a part of main name. The numbering is given in a way that the substituent gets the least numbering possible.
Ortho- means disubstitution in 1,2
Meta- means disubstitution in 1,3
Para- means disubstitution in 1,4
In all the above derivatives of phenol, the first position is occupied by hydroxyl group.
Phenol derivatives with two or more substituents:
More than two groups are present in the benzene ring means, their positions are numbered. The numbering is always done in a way that the carbon atom bearing substituent gets the lowest numbering possible. If there is a choice of numbering system, then the group that comes alphabetically first is given the lowest number.
(b)
Interpretation:
The given phenol has to be named.
Concept Introduction:
When one hydrogen atoms are replaced by a hydroxyl group in benzene is known as phenol. If the other hydrogen atoms present in phenol are replaced by other atoms or groups are known as phenol derivatives.
Phenol derivative with one substituent:
IUPAC system of naming phenol derivative considers phenol to be a part of main name. The numbering is given in a way that the substituent gets the least numbering possible.
Ortho- means disubstitution in 1,2
Meta- means disubstitution in 1,3
Para- means disubstitution in 1,4
In all the above derivatives of phenol, the first position is occupied by hydroxyl group.
Phenol derivatives with two or more substituents:
More than two groups are present in the benzene ring means, their positions are numbered. The numbering is always done in a way that the carbon atom bearing substituent gets the lowest numbering possible. If there is a choice of numbering system, then the group that comes alphabetically first is given the lowest number.
(c)
Interpretation:
The given phenol has to be named.
Concept Introduction:
When one hydrogen atoms are replaced by a hydroxyl group in benzene is known as phenol. If the other hydrogen atoms present in phenol are replaced by other atoms or groups are known as phenol derivatives.
Phenol derivative with one substituent:
IUPAC system of naming phenol derivative considers phenol to be a part of main name. The numbering is given in a way that the substituent gets the least numbering possible.
Ortho- means disubstitution in 1,2
Meta- means disubstitution in 1,3
Para- means disubstitution in 1,4
In all the above derivatives of phenol, the first position is occupied by hydroxyl group.
Phenol derivatives with two or more substituents:
More than two groups are present in the benzene ring means, their positions are numbered. The numbering is always done in a way that the carbon atom bearing substituent gets the lowest numbering possible. If there is a choice of numbering system, then the group that comes alphabetically first is given the lowest number.
(d)
Interpretation:
The given phenol has to be named.
Concept Introduction:
When one hydrogen atoms are replaced by a hydroxyl group in benzene is known as phenol. If the other hydrogen atoms present in phenol are replaced by other atoms or groups are known as phenol derivatives.
Phenol derivative with one substituent:
IUPAC system of naming phenol derivative considers phenol to be a part of main name. The numbering is given in a way that the substituent gets the least numbering possible.
Ortho- means disubstitution in 1,2
Meta- means disubstitution in 1,3
Para- means disubstitution in 1,4
In all the above derivatives of phenol, the first position is occupied by hydroxyl group.
Phenol derivatives with two or more substituents:
More than two groups are present in the benzene ring means, their positions are numbered. The numbering is always done in a way that the carbon atom bearing substituent gets the lowest numbering possible. If there is a choice of numbering system, then the group that comes alphabetically first is given the lowest number.

Trending nowThis is a popular solution!

Chapter 14 Solutions
EBK GENERAL, ORGANIC, AND BIOLOGICAL CH
- Use the literature Ka value of the acetic acid, and the data below to answer these questions. Note: You will not use the experimental titration graphs to answer the questions that follow. Group #1: Buffer pH = 4.35 Group #2: Buffer pH = 4.70 Group #3: Buffer pH = 5.00 Group #4: Buffer pH = 5.30 Use the Henderson-Hasselbalch equation, the buffer pH provided and the literature pKa value of acetic acid to perform the following: a) calculate the ratios of [acetate]/[acetic acid] for each of the 4 groups buffer solutions above. b) using the calculated ratios, which group solution will provide the best optimal buffer (Hint: what [acetate]/[acetic acid] ratio value is expected for an optimal buffer?) c) explain your choicearrow_forwardHow would you prepare 1 liter of a 50 mM Phosphate buffer at pH 7.5 beginning with K3PO4 and 1 M HCl or 1 M NaOH? Please help and show calculations. Thank youarrow_forwardDraw the four most importantcontributing structures of the cation intermediate thatforms in the electrophilic chlorination of phenol,(C6H5OH) to form p-chlorophenol. Put a circle aroundthe best one. Can you please each step and also how you would approach a similar problem. Thank you!arrow_forward
- A 100mM lactic acid/lactate buffer was found to have a lactate to lactic acid ratio of 2 and a pH of 4.2. What is the pKa of lactic acid? Can you please help show the calculations?arrow_forwardUsing line angle formulas, draw thestructures of and name four alkanes that have total of 7carbons, one of which is tertiary.Please explain this in detail and can you also explain how to approach a similar problem like this as well?arrow_forwardUsing dashed line wedge projections drawthe indicated compounds and indicate whether thecompound you have drawn is R or S.(a) The two enantiomers of 2-chlorobutane. Can you please explain your steps and how you would approach a similar problem. Thank you!arrow_forward
- Organic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning


