Brock Biology of Microorganisms (14th Edition)
Brock Biology of Microorganisms (14th Edition)
14th Edition
ISBN: 9780321897398
Author: Michael T. Madigan, John M. Martinko, Kelly S. Bender, Daniel H. Buckley, David A. Stahl, Thomas Brock
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 13.15, Problem 1MQ

Give an example of interspecies H2 transfer. Why can it be said that both organisms benefit from this process?

Blurred answer
Students have asked these similar questions
Questions 32 and 33 refer to the following scenario: A cell containing a high concentration of CO2 is placed into a solution containing a high concentration of O2.  The concentration of CO2 in the cell is equal to the concentration of O2 outside the cell.   What will happen to the O2 in the solution? a) It will be actively transported into the cell, moving down its concentration gradient.  b) It will diffuse into the cell, moving down its concentration gradient. c) It will not move because it can’t cross the cell membrane. d) It will not move because there is as much CO2 in the cell as O2 outside it. e) none of the above   Subsequent to what happened (if anything) in #7, some sugar is added to the solution in which the cell resides. Which of the following statements is true? a) The cell is now in an isotonic solution. b) The cell is now in a hypertonic c) The cell is now in an hypotonic d) The cell is exergonic e) The cell is endergonic
Explain the purpose of the O+ cells in the reverse grouping. In what circumstances would you expect to achieve: Positive reaction with O+ cells and Negative reaction with O+ cells
Discuss the effects of the following factors in the rate of cellular respiration: a. temperature b. substrate availability c.wounding

Chapter 13 Solutions

Brock Biology of Microorganisms (14th Edition)

Ch. 13.4 - What is the key role of light energy in the...Ch. 13.4 - What evidence is there that anoxygenic and...Ch. 13.5 - Prob. 1MQCh. 13.5 - How much NADPH and ATP is required to make one...Ch. 13.5 - Contrast autotrophy in the following phototrophs:...Ch. 13.6 - Prob. 1MQCh. 13.6 - Prob. 2MQCh. 13.7 - What enzyme is required for hydrogen bacteria to...Ch. 13.7 - Why is reverse electron flow unnecessary in H2...Ch. 13.8 - Prob. 1MQCh. 13.8 - In terms of intermediates, how does the Sox system...Ch. 13.9 - Prob. 1MQCh. 13.9 - What is the function of rusticyanin and where is...Ch. 13.9 - How can Fe2+ be oxidized under anoxic conditions?Ch. 13.10 - Prob. 1MQCh. 13.10 - Prob. 2MQCh. 13.10 - Prob. 3MQCh. 13.11 - Prob. 1MQCh. 13.11 - Why is acetate formation in fermentation...Ch. 13.12 - How can homo- and heterofermentative metabolism be...Ch. 13.12 - Butanediol production leads to greater ethanol...Ch. 13.13 - Compare the mechanisms for energy conservation in...Ch. 13.13 - What type of substrates are fermented by...Ch. 13.13 - What are the substrates for the Clostridium...Ch. 13.14 - Why does Propionigenium modestum require sodium...Ch. 13.14 - Of what benefit is the organism Oxalobacter to...Ch. 13.14 - Prob. 3MQCh. 13.15 - Give an example of interspecies H2 transfer. Why...Ch. 13.15 - Why can a pure culture of Syntrophomonas grow on...Ch. 13.16 - How does aerobic respiration differ from anaerobic...Ch. 13.16 - Prob. 2MQCh. 13.17 - For Escherichia coli, why is more energy released...Ch. 13.17 - How do the products of NO3 reduction differ...Ch. 13.17 - Where is the dissimilative nitrate reductase found...Ch. 13.18 - How is SO42 converted to SO32 during dissimilative...Ch. 13.18 - Contrast the growth of Desulfovibrio on H2 versus...Ch. 13.18 - Give an example of sulfur disproportionation.Ch. 13.19 - Prob. 1MQCh. 13.19 - Prob. 2MQCh. 13.19 - Prob. 3MQCh. 13.20 - Which coenzymes function as C1 carriers in...Ch. 13.20 - In methanogens growing on H2 + CO2, how is carbon...Ch. 13.20 - How is ATP made in methanogenesis when the...Ch. 13.21 - Prob. 1MQCh. 13.21 - What is reductive dechlorination and why is it...Ch. 13.21 - How does anaerobic glucose catabolism differ in...Ch. 13.22 - How do monooxygenases differ in function from...Ch. 13.22 - What is the final product of catabolism of a...Ch. 13.22 - Prob. 3MQCh. 13.23 - When using CH4 as electron donor, why is...Ch. 13.23 - Prob. 2MQCh. 13.23 - In which two ways does the ribulose monophosphate...Ch. 13.24 - Prob. 1MQCh. 13.24 - How is hexane oxygenated during anoxic catabolism?Ch. 13.24 - Prob. 3MQCh. 13 - Prob. 1RQCh. 13 - Prob. 2RQCh. 13 - What accessory pigments are present in...Ch. 13 - Prob. 4RQCh. 13 - Prob. 5RQCh. 13 - Prob. 6RQCh. 13 - REVIEW QUESTIONS 7. What two enzymes are unique to...Ch. 13 - Prob. 8RQCh. 13 - Prob. 9RQCh. 13 - QWhich inorganic electron donors are used by the...Ch. 13 - Prob. 11RQCh. 13 - Define the term substrate-level phosphorylation:...Ch. 13 - Prob. 13RQCh. 13 - Prob. 14RQCh. 13 - Prob. 15RQCh. 13 - Prob. 16RQCh. 13 - Prob. 17RQCh. 13 - Prob. 18RQCh. 13 - Compare and contrast acetogens with methanogens in...Ch. 13 - Compare and contrast ferric iron reduction with...Ch. 13 - How do monooxygenases differ from dioxygenases in...Ch. 13 - Prob. 22RQCh. 13 - Prob. 23RQCh. 13 - Prob. 1AQCh. 13 - The growth rate of the phototrophic purple...Ch. 13 - Prob. 3AQCh. 13 - A fatty acid such as butyrate cannot be fermented...Ch. 13 - When methane is made from CO2 (plus H2) or from...
Knowledge Booster
Background pattern image
Biology
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biology and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Biology (MindTap Course List)
Biology
ISBN:9781337392938
Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. Berg
Publisher:Cengage Learning
Text book image
Basic Clinical Laboratory Techniques 6E
Biology
ISBN:9781133893943
Author:ESTRIDGE
Publisher:Cengage
Text book image
Biology 2e
Biology
ISBN:9781947172517
Author:Matthew Douglas, Jung Choi, Mary Ann Clark
Publisher:OpenStax
Text book image
Aquaculture Science
Biology
ISBN:9781133558347
Author:Parker
Publisher:Cengage
genetic recombination strategies of bacteria CONJUGATION, TRANSDUCTION AND TRANSFORMATION; Author: Scientist Cindy;https://www.youtube.com/watch?v=_Va8FZJEl9A;License: Standard youtube license