
Concept explainers
(a)
Interpretation:
The product formed should be determined on the reaction of following
Concept Introduction:
A
In a chemical reaction, the substance which is involved in conversion is said to be reactant, whereas, the newly formed substance is known as a product. Both reactants and products must be separated by an arrow.
Hydration reaction is an addition reaction in which the hydrogen and hydroxyl group (-OH) are bonded on un-statured carbon atoms of alkene to form alcohol.

Answer to Problem 13.62P
Explanation of Solution
To get the hydration product of any alkene, three steps must be followed:
- Locate the position of C=C in the molecule.
- Break the H-OH bond of the reagent.
- Add the -OH group atom to double-bonded C atom to form new C−OH single bonds in the molecule.
- Add one H atom to another double-bonded C atom to form new C−H single bonds in the molecule.
- The reaction follows the Markovnikov rule which states that the H atom of H-OH will bond to that double-bonded C atom which has more number of H atoms.
Hence, the hydration product is:
.
(b)
Interpretation:
The product formed should be determined on the reaction of following alkene with
(CH3)3 -C =C -(CH3)2
Concept Introduction:
A chemical reaction is the symbolic representation of the conversion of substances to new substances.
In a chemical reaction, the substance which is involved in conversion is said to be reactant, whereas, the newly formed substance is known as a product. Both reactants and products must be separated by an arrow.
Hydration reaction is an addition reaction in which the hydrogen and hydroxyl group (-OH) are bonded on un-statured carbon atoms of alkene to form alcohol.

Answer to Problem 13.62P
Explanation of Solution
To get the hydration product of any alkene, three steps must be followed;
- Locate the position of C=C in the molecule.
- Break the H-OH bond of the reagent.
- Add the -OH group atom to double-bonded C atom to form new C−OH single bonds in the molecule.
- Add one H atom to another double-bonded C atom to form new C−H single bonds in the molecule.
- The reaction follows the Markovnikov rule which states that the H atom of H-OH will bond to that double-bonded C atom which has more number of H atoms.
Hence, the hydration product is:
(c)
Interpretation:
The product formed should be determined on the reaction of following alkene with
Concept Introduction:
A chemical reaction is the symbolic representation of the conversion of substances to new substances.
In a chemical reaction, the substance which is involved in conversion is said to be reactant, whereas, the newly formed substance is known as a product. Both reactants and products must be separated by an arrow.
Hydration reaction is an addition reaction in which the hydrogen and hydroxyl group (-OH) are bonded on un-statured carbon atoms of alkene to form alcohol.

Answer to Problem 13.62P
Explanation of Solution
To get the hydration product of any alkene, three steps must be followed;
- Locate the position of C=C in the molecule.
- Break the H-OH bond of the reagent.
- Add the -OH group atom to double-bonded C atom to form new C−OH single bonds in the molecule.
- Add one H atom to another double-bonded C atom to form new C−H single bonds in the molecule.
- The reaction follows the Markovnikov rule which states that the H atom of H-OH will bond to that double-bonded C atom which has more number of H atoms.
Hence, the hydration product is:
(d)
Interpretation:
The product formed should be determined on the reaction of following alkene with
Concept Introduction:
A chemical reaction is the symbolic representation of the conversion of substances to new substances.
In a chemical reaction, the substance which is involved in conversion is said to be reactant, whereas, the newly formed substance is known as a product. Both reactants and products must be separated by an arrow.
Hydration reaction is an addition reaction in which the hydrogen and hydroxyl group (-OH) are bonded on un-statured carbon atoms of alkene to form alcohol.

Answer to Problem 13.62P
Explanation of Solution
To get the hydration product of any alkene, three steps must be followed;
- Locate the position of C=C in the molecule.
- Break the H-OH bond of the reagent.
- Add the -OH group atom to double-bonded C atom to form new C−OH single bonds in the molecule.
- Add one H atom to another double-bonded C atom to form new C−H single bonds in the molecule.
- The reaction follows the Markovnikov rule which states that the H atom of H-OH will bond to that double-bonded C atom which has more number of H atoms.
Hence the hydration product is:
Want to see more full solutions like this?
Chapter 13 Solutions
EBK GENERAL, ORGANIC, & BIOLOGICAL CHEM
- Part I. Draw reaction mechanism for the transformations of benzophenone to benzopinacol to benzopinaco lone and answer the ff: Pinacol (2,3-dimethyl, 1-3-butanediol) on treatment w/ acid gives a mixture of pina colone and (3,3-dimethyl-2-butanone) 2,3-dimethyl-1,3-butadiene. Give reasonable mechanism the formation of the products Forarrow_forwardShow the mechanism for these reactionsarrow_forwardDraw the stepwise mechanismarrow_forward
- Draw a structural formula of the principal product formed when benzonitrile is treated with each reagent. (a) H₂O (one equivalent), H₂SO₄, heat (b) H₂O (excess), H₂SO₄, heat (c) NaOH, H₂O, heat (d) LiAlH4, then H₂Oarrow_forwardDraw the stepwise mechanism for the reactionsarrow_forwardDraw stepwise mechanismarrow_forward
- Part I. Draw reaction mechanism for the transformations of benzophenone to benzopinacol to benzopinaco lone and answer the ff: a) Give the major reason for the exposure of benzophenone al isopropyl alcohol (w/acid) to direct sunlight of pina colone Mechanism For b) Pinacol (2,3-dimethy 1, 1-3-butanediol) on treatment w/ acid gives a mixture (3,3-dimethyl-2-butanone) and 2, 3-dimethyl-1,3-butadiene. Give reasonable the formation of the productsarrow_forwardwhat are the Iupac names for each structurearrow_forwardWhat are the IUPAC Names of all the compounds in the picture?arrow_forward
- 1) a) Give the dominant Intermolecular Force (IMF) in a sample of each of the following compounds. Please show your work. (8) SF2, CH,OH, C₂H₂ b) Based on your answers given above, list the compounds in order of their Boiling Point from low to high. (8)arrow_forward19.78 Write the products of the following sequences of reactions. Refer to your reaction road- maps to see how the combined reactions allow you to "navigate" between the different functional groups. Note that you will need your old Chapters 6-11 and Chapters 15-18 roadmaps along with your new Chapter 19 roadmap for these. (a) 1. BHS 2. H₂O₂ 3. H₂CrO4 4. SOCI₂ (b) 1. Cl₂/hv 2. KOLBU 3. H₂O, catalytic H₂SO4 4. H₂CrO4 Reaction Roadmap An alkene 5. EtOH 6.0.5 Equiv. NaOEt/EtOH 7. Mild H₂O An alkane 1.0 2. (CH3)₂S 3. H₂CrO (d) (c) 4. Excess EtOH, catalytic H₂SO OH 4. Mild H₂O* 5.0.5 Equiv. NaOEt/EtOH An alkene 6. Mild H₂O* A carboxylic acid 7. Mild H₂O* 1. SOC₁₂ 2. EtOH 3.0.5 Equiv. NaOEt/E:OH 5.1.0 Equiv. NaOEt 6. NH₂ (e) 1. 0.5 Equiv. NaOEt/EtOH 2. Mild H₂O* Br (f) i H An aldehyde 1. Catalytic NaOE/EtOH 2. H₂O*, heat 3. (CH,CH₂)₂Culi 4. Mild H₂O* 5.1.0 Equiv. LDA Br An ester 4. NaOH, H₂O 5. Mild H₂O* 6. Heat 7. MgBr 8. Mild H₂O* 7. Mild H₂O+arrow_forwardLi+ is a hard acid. With this in mind, which if the following compounds should be most soluble in water? Group of answer choices LiBr LiI LiF LiClarrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





