Chemistry: Principles and Practice
Chemistry: Principles and Practice
3rd Edition
ISBN: 9780534420123
Author: Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher: Cengage Learning
bartleby

Videos

Question
Book Icon
Chapter 13, Problem 13.56QE
Interpretation Introduction

Interpretation:

Half-life of the first-order reaction has to be calculated if the reactant concentration is 0.0451M at 30.5sec decreases to 0.0321M at 45.0sec and also the time that is taken for the reactant concentration to decrease to 0.0100M has to be calculated.

Expert Solution & Answer
Check Mark

Answer to Problem 13.56QE

Half-life of the reactant is 29.6s and the time taken for the reactant concentration to decrease to 0.0100M is 95s.

Explanation of Solution

Integrated rate law for the first order reaction is given as follows;

    ln[R]t=ln[R]0kt

Where,

    [R]0 is the initial concentration of the reactant.

    k is the rate constant.

For the concentration of the reactant of 0.0451M at 30.5sec:

The integrated rate law can be given as shown below;

    ln[R]0=ln[R]t+kt

Substituting the values in the equation as shown below;

    ln[R]0=ln(0.0451)+k(30.5sec)        (1)

For the concentration of the reactant of 0.0321M at 45.0sec:

The integrated rate law can be given as shown below;

    ln[R]0=ln[R]t+kt

Substituting the values in the equation as shown below;

    ln[R]0=ln(0.0321)+k(45.0sec)        (2)

Considering the equations (1), and (2), it is found that the left side is equal.  Therefore, equating the right side of both equations, the rate constant can be calculated as shown below;

    ln(0.0451)+k(30.5sec)=ln(0.0321)+k(45.0sec)3.099+k(30.5sec)=3.439+k(45.0sec)k(45.0sec)k(30.5sec)=3.4393.099k(14.5sec)=0.340k=0.34014.5sec=0.0234s1

Therefore, the rate constant of the reaction is 0.0234s1.

The relationship between half-life and the rate constant of first order reaction is given as follows;

    Half-life(t1/2)=0.693k=0.6930.0234s1=29.6s

Thus, half-life of the reactant is calculated as 29.6s.

Initial concentration can be calculated by substituting the rate constant value in equation (1) as follows;

    ln[R]0=ln(0.0451)+k(30.5sec)=ln(0.0451)+(0.0234s1)(30.5sec)=3.099+0.7137ln[R]0=2.3853[R]0=e2.3853=0.092M

Therefore, the initial concentration of the reactant is 0.092M.

Time taken for the reactant concentration to decrease from 0.092M to 0.0100M can be calculated using the integrated rate law as shown below;

    ln[R]t=ln[R]0ktkt=ln[R]0ln[R]t=ln[R]0[R]tt=10.0234s1ln0.0920.0100=2.2190.0234s1=95s

Therefore, the time taken for the reactant concentration to decrease to 0.0100M is 95s.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Please predict the product for the following reactions in a drawn out solution.
Draw the complete mechanism for the reaction below. Please include appropriate arrows, intermediates, and formal charges.
(c) The following data have been obtained for the hydrolysis of sucrose, C12H22O11, to glucose, C6H12O6, and fructose C6H12O6, in acidic solution: C12H22O11 + H2O → C6H12O6 + C6H12O6 [sucrose]/mol dm³ t/min 0 0.316 14 0.300 39 0.274 60 0.256 80 0.238 110 0.211 (i) Graphically prove the order of the reaction and determine the rate constant of the reaction. (ii) Determine the half-life, t½ for the hydrolysis of sucrose.

Chapter 13 Solutions

Chemistry: Principles and Practice

Ch. 13 - Prob. 13.11QECh. 13 - Prob. 13.12QECh. 13 - Prob. 13.13QECh. 13 - Prob. 13.14QECh. 13 - Prob. 13.15QECh. 13 - Prob. 13.16QECh. 13 - Prob. 13.17QECh. 13 - Prob. 13.18QECh. 13 - Prob. 13.19QECh. 13 - Prob. 13.20QECh. 13 - Prob. 13.21QECh. 13 - Prob. 13.22QECh. 13 - Nitrogen monoxide reacts with chlorine to form...Ch. 13 - Prob. 13.24QECh. 13 - Prob. 13.25QECh. 13 - Prob. 13.26QECh. 13 - Prob. 13.27QECh. 13 - Prob. 13.28QECh. 13 - Prob. 13.29QECh. 13 - Prob. 13.30QECh. 13 - Prob. 13.31QECh. 13 - Prob. 13.32QECh. 13 - Prob. 13.33QECh. 13 - Write a rate law for NO3(g) + O2(g) NO2(g) +...Ch. 13 - Prob. 13.35QECh. 13 - Prob. 13.36QECh. 13 - Prob. 13.37QECh. 13 - Rate data were obtained at 25 C for the following...Ch. 13 - Prob. 13.39QECh. 13 - Prob. 13.40QECh. 13 - Prob. 13.41QECh. 13 - Prob. 13.42QECh. 13 - Prob. 13.43QECh. 13 - Prob. 13.44QECh. 13 - Prob. 13.45QECh. 13 - Prob. 13.46QECh. 13 - Prob. 13.47QECh. 13 - Prob. 13.48QECh. 13 - When formic acid is heated, it decomposes to...Ch. 13 - Prob. 13.50QECh. 13 - The half-life of tritium, 3H, is 12.26 years....Ch. 13 - Prob. 13.52QECh. 13 - Prob. 13.53QECh. 13 - Prob. 13.54QECh. 13 - Prob. 13.55QECh. 13 - Prob. 13.56QECh. 13 - The decomposition of ozone is a second-order...Ch. 13 - Prob. 13.58QECh. 13 - Prob. 13.59QECh. 13 - Prob. 13.60QECh. 13 - A reaction rate doubles when the temperature...Ch. 13 - Prob. 13.62QECh. 13 - Prob. 13.63QECh. 13 - Prob. 13.64QECh. 13 - Prob. 13.65QECh. 13 - The activation energy for the decomposition of...Ch. 13 - Prob. 13.67QECh. 13 - Prob. 13.68QECh. 13 - Prob. 13.69QECh. 13 - Prob. 13.70QECh. 13 - Prob. 13.71QECh. 13 - Prob. 13.72QECh. 13 - Prob. 13.73QECh. 13 - Prob. 13.74QECh. 13 - Prob. 13.75QECh. 13 - Prob. 13.76QECh. 13 - Prob. 13.77QECh. 13 - Prob. 13.78QECh. 13 - Prob. 13.79QECh. 13 - Prob. 13.80QECh. 13 - The gas-phase reaction of nitrogen monoxide with...Ch. 13 - Prob. 13.82QECh. 13 - Prob. 13.83QECh. 13 - A catalyst reduces the activation energy of a...Ch. 13 - Prob. 13.85QECh. 13 - Prob. 13.86QECh. 13 - Prob. 13.87QECh. 13 - Prob. 13.88QECh. 13 - Prob. 13.89QECh. 13 - Prob. 13.90QECh. 13 - Prob. 13.91QECh. 13 - Prob. 13.92QECh. 13 - Prob. 13.93QECh. 13 - Prob. 13.94QECh. 13 - Prob. 13.95QECh. 13 - Prob. 13.96QECh. 13 - Prob. 13.98QECh. 13 - Prob. 13.99QE
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Chemistry: Principles and Practice
    Chemistry
    ISBN:9780534420123
    Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
    Publisher:Cengage Learning
    Text book image
    Chemistry: The Molecular Science
    Chemistry
    ISBN:9781285199047
    Author:John W. Moore, Conrad L. Stanitski
    Publisher:Cengage Learning
    Text book image
    Physical Chemistry
    Chemistry
    ISBN:9781133958437
    Author:Ball, David W. (david Warren), BAER, Tomas
    Publisher:Wadsworth Cengage Learning,
  • Text book image
    Chemistry for Engineering Students
    Chemistry
    ISBN:9781337398909
    Author:Lawrence S. Brown, Tom Holme
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
    Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781337399074
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Kinetics: Chemistry's Demolition Derby - Crash Course Chemistry #32; Author: Crash Course;https://www.youtube.com/watch?v=7qOFtL3VEBc;License: Standard YouTube License, CC-BY