(a)
Interpretation:
Rate law for the reaction of nitrogen monoxide with hydrogen has to be given.
(a)
Answer to Problem 13.99QE
Rate law for the given reaction is
Explanation of Solution
The reaction between nitrogen monoxide and hydrogen to produce nitrogen and water is given be the equation shown below;
Relative concentration of the reactant is determined by dividing the pressure of each reactant by the smallest pressure of the reactant. Relative rate of the reaction is determined by dividing the rate of the reaction by the smallest rate that is obtained from the experimental data.
The relative concentration in terms of pressure of
Initial | Initial | Initial rate of the reaction | Relative | Relative | Relative rates of the reaction |
From the above table, it is found that in experiments 1, 2 and 3, the concentration of nitrogen monoxide remains constant while the relative rate of the reaction increases in relative manner as the concentration of
From the above table, it is found that in experiments 4, 5 and 6, the concentration of hydrogen remains constant while the relative rate of the reaction doubles as the concentration of
Rate law:
Rate law is the relationship between the concentration of the reactants and the rate of the reaction. The rate law equation is given as the rate of the reaction that is directly proportional to the product of the reactant concentration that is raised to the power of the respective reactant coefficient. Therefore, the rate law for the given reaction is as follows;
Where,
(b)
Interpretation:
Rate constant for the reaction of nitrogen monoxide with hydrogen has to be given.
(b)
Answer to Problem 13.99QE
Rate constant for the given reaction is
Explanation of Solution
The rate law for the given reaction is as follows;
Where,
Rate constant:
The rate constant for the reaction can be calculated from the rate law using the initial pressure of the reactants as shown below;
Rearranging the above equation in order to calculate the rate constant;
Substituting the values for rate and the pressure of the reactants in the above equation, the rate constant of the reaction is calculated as shown below;
Therefore, the rate constant for the reaction is
(c)
Interpretation:
Activation energy has to be calculated for the reaction of nitrogen monoxide with hydrogen.
Concept Introduction:
Activation energy is the minimum amount of energy that has to be possessed by the reactant species in order to produce products. Activation energy is represented as
(c)
Answer to Problem 13.99QE
Activation energy of the reaction is
Explanation of Solution
The relative rate constants and temperature are as follows;
Rate constant | Temperature |
Activation energy and the rate constants for a reaction at two different temperatures is related by the equation as follows;
Where,
Rearranging equation (1) in order to obtain activation energy, the equation is given as shown below;
Substituting the first and third entry from the table given above in equation (2), the activation energy can be calculated as follows;
Therefore, the activation energy of the reaction is
Want to see more full solutions like this?
Chapter 13 Solutions
Chemistry: Principles and Practice
- Draw curved arrows for the following reaction step. Arrow-pushing Instructions CH3 CH3 H H-O-H +/ H3C-C+ H3C-C-0: CH3 CH3 Harrow_forward1:14 PM Fri 20 Dec 67% Grade 7 CBE 03/12/2024 (OOW_7D 2024-25 Ms Sunita Harikesh) Activity Hi, Nimish. When you submit this form, the owner will see your name and email address. Teams Assignments * Required Camera Calendar Files ... More Skill: Advanced or complex data representation or interpretation. Vidya lit a candle and covered it with a glass. The candle burned for some time and then went off. She wanted to check whether the length of the candle would affect the time for which it burns. She performed the experiment again after changing something. Which of these would be the correct experimental setup for her to use? * (1 Point) She wanted to check whether the length of the candle would affect the time for which it burns. She performed the experiment again after changing something. Which of these would be the correct experimental setup for her to use? A Longer candle; No glass C B Longer candle; Longer glass D D B Longer candle; Same glass Same candle; Longer glassarrow_forwardBriefly describe the compounds called carboranes.arrow_forward
- JON Determine the bund energy for UCI (in kJ/mol Hcl) using me balanced chemical equation and bund energies listed? का (My (9) +36/2(g)-(((3(g) + 3(g) A Hryn = -330. KJ bond energy и-н 432 bond bond C-1413 C=C 839 N-H 391 C=O 1010 S-H 363 б-н 467 02 498 N-N 160 N=N 243 418 C-C 341 C-0 358 C=C C-C 339 N-Br 243 Br-Br C-Br 274 193 614 (-1 214||(=olin (02) 799 C=N 615 AALarrow_forwardDetermine the bond energy for HCI ( in kJ/mol HCI) using he balanced cremiculequecticnand bund energles listed? also c double bond to N is 615, read numbets carefully please!!!! Determine the bund energy for UCI (in kJ/mol cl) using me balanced chemical equation and bund energies listed? 51 (My (9) +312(g)-73(g) + 3(g) =-330. KJ спод bond energy Hryn H-H bond band 432 C-1 413 C=C 839 NH 391 C=O 1010 S-1 343 6-H 02 498 N-N 160 467 N=N C-C 341 CL- 243 418 339 N-Br 243 C-O 358 Br-Br C=C C-Br 274 193 614 (-1 216 (=olin (02) 799 C=N 618arrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning