(a)
Interpretation:
The order of the decomposition of nitrogen dioxide has to be determined.
(a)
Explanation of Solution
The time and the pressure of the reactant is given as shown below;
Time ( | Pressure of | Pressure of | |
Graph of concentration and time is plotted considering the time in x-axis and pressure of the reactant at
As the obtained graph is not a straight line, the reaction is not a zero order.
If the plot of graph with time and
Time ( | Pressure of | |
As the obtained graph is a straight line, the reaction is a first order.
(b)
Interpretation:
Rate constant for the decomposition of nitrogen dioxide has to be determined.
(b)
Explanation of Solution
The time and the pressure of the reactant is given as shown below;
Time ( | Pressure of | Pressure of | |
Graph of concentration and time is plotted considering the time in x-axis and pressure of the reactant at
As the obtained graph is not a straight line, the reaction is not a zero order.
If the plot of graph with time and
Time ( | Pressure of | |
As the obtained graph is a straight line, the reaction is a first order. Therefore, the rate law can be given as shown below;
Rate constant for the reaction at
The rate constant of the first order reaction can be calculated as shown below;
The rate constant of the reaction at
Rate constant for the reaction at
The rate constant of the first order reaction can be calculated as shown below;
The rate constant of the reaction at
(c)
Interpretation:
Activation energy has to be calculated for the decomposition of nitrogen dioxide.
Concept Introduction:
Activation energy is the minimum amount of energy that has to be possessed by the reactant species in order to produce products. Activation energy is represented as
(c)
Answer to Problem 13.90QE
Activation energy of the reaction is
Explanation of Solution
The rate constants and temperature are as follows;
Rate constant | Temperature |
Activation energy and the rate constants for a reaction at two different temperatures is related by the equation as follows;
Where,
Rearranging equation (1) in order to obtain activation energy, the equation is given as shown below;
Substituting the first and third entry from the table given above in equation (2), the activation energy can be calculated as follows;
Therefore, the activation energy of the reaction is
Want to see more full solutions like this?
Chapter 13 Solutions
Chemistry: Principles and Practice
- Aktiv Learning App Cengage Digital Learning Part of Speech Table for Assign x o Mail-Karen Ento-Outlook * + app.aktiv.com Your Aktiv Learning trial expires on 02/06/25 at 01:15 PM Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. Problem 17 of 30 Drawing Arrows heat 4 O M B D 5x H H Und Settings H Done :0: H Jararrow_forwardConvert the following chairs into ring representations: a. Brz b.arrow_forwardDrawing Arrows 1 I I 1 heat 1 51 MO + Drag To Und Settings Done 0 0 Jan 31 3:5arrow_forward
- Don't used hand raitingarrow_forwardGramicidin A can adopt more than one structure; NMR spectroscopy has revealed an “end-to-end” dimer form, and x-ray crystallography has revealed an “anti-parallel double- helical” form. Briefly outline and describe an experimentalapproach/strategy to investigate WHICH configuration (“end-to-end dimer” vs “anti-paralleldouble helical”) gramicidin adopts in an actual lipid bilayer.arrow_forwardDon't used hand raitingarrow_forward
- CHEM2323 Problem 2-24 Tt O e: ל Predict the product(s) of the following acid/base reactions. Draw curved arrows to show the formation and breaking of bonds. If the bonds needed are not drawn out, you should redraw them. + BF3 (a) (b) HI + (c) OH -BF Problem 2-25 Use curved arrows and a proton (H+) to draw the protonated form of the following Lewis bases. Before starting, add all missing lone pairs. (a) (b) :0: (c) N 1 CHEM2323 PS CH02 Name:arrow_forwardCHEM2323 Problem 2-26 Tt O PS CH02 Name: Use the curved-arrow formalism to show how the electrons flow in the resonance form on the left to give the one on the right. (Draw all lone pairs first) (a) NH2 NH2 + (b) Problem 2-27 Double bonds can also act like Lewis bases, sharing their electrons with Lewis acids. Use curved arrows to show how each of the following double bonds will react with H-Cl and draw the resulting carbocation. (a) H2C=CH2 (b) (c) Problem 2-28 Identify the most electronegative element in each of the following molecules: (a) CH2FCI F Problem 2-29 (b) FCH2CH2CH2Br (c) HOCH2CH2NH2 (d) CH3OCH2Li F 0 0 Use the electronegativity table in Figure 2.3 to predict which bond in the following pairs is more polar and indicate the direction of bond polarity for each compound. (a) H3C-Cl or Cl-CI (b) H3C-H or H-CI (c) HO-CH3 or (CH3)3Si-CH3 (d) H3C-Li or Li-OHarrow_forwardDon't used hand raitingarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co