Chemistry: Principles and Practice
3rd Edition
ISBN: 9780534420123
Author: Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 13, Problem 13.33QE
Interpretation Introduction
Interpretation:
The rate law for the reaction of ammonium chloride has to be given.
Concept Introduction:
The rate law relates the
The exponents x and y are the orders of the reactions. The order of the reaction is usually a small positive integer. The sum of the orders of the reaction is called as overall order of the reaction.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The decomposition of XY is second order in XY and has a rate constant of 7.41 × 10−3 L·mol−1·s−1 at a certain temperature, the half-life for this reaction at an initial concentration of 0.101 mol·L−1 1336. A) If the initial concentration of XY is 0.225 mol·L−1, how long will it take for the concentration to decrease to 6.95 × 10−2 mol·L−1 ?, B) If the initial concentration of XY is 0.080 mol·L−1, what is the concentration of XY after 75 s ?
A study of the rate of dimerization of C4H6 gave the data shown in the table:
2C4H6→C8H12
Time (s)
[C4H6] (M)
0
1.00 x 10–2
1600
5.04 x 10–3
3200
3.37 x 10–3
4800
2.53 x 10–3
6200
2.08 x 10–3
What is the instantaneous rate of dimerization at 3200 s? Create a graph of time versus [C4H6] to help answer this question.
Question 1 options:
a)
9.4 x 10-7 M s-1
b)
8.2 x 10-7 M s-1
c)
7.7 x 10-7 M s-1
d)
6.5 x 10-7 M s-1
The reaction rate for the decomposition of N,O5 to form NO2 and O2 was studied as a function of
temperature. The first order reaction rate constants were found to be:
T (K)
k(s*)
273
7.9 x 107
298
3.5 x 105
308
1.4 x 104
318
5.0 x 104
328
1.5 x 10 3
338
4.9 x 103
What is the E, for this reaction in kJ/mol?
Use Excel to plot the pertinent data and use linear regression to calculate the slope of the line connecting
your data.
Round your answer to 2 decimal places.
Chapter 13 Solutions
Chemistry: Principles and Practice
Ch. 13 - Prob. 13.1QECh. 13 - Prob. 13.2QECh. 13 - What is the difference between the integrated and...Ch. 13 - Prob. 13.4QECh. 13 - Explain why half-lives are not normally used to...Ch. 13 - Derive an expression for the half-life of a...Ch. 13 - Prob. 13.7QECh. 13 - Prob. 13.8QECh. 13 - Prob. 13.9QECh. 13 - Prob. 13.10QE
Ch. 13 - Prob. 13.11QECh. 13 - Prob. 13.12QECh. 13 - Prob. 13.13QECh. 13 - Prob. 13.14QECh. 13 - Prob. 13.15QECh. 13 - Prob. 13.16QECh. 13 - Prob. 13.17QECh. 13 - Prob. 13.18QECh. 13 - Prob. 13.19QECh. 13 - Prob. 13.20QECh. 13 - Prob. 13.21QECh. 13 - Prob. 13.22QECh. 13 - Nitrogen monoxide reacts with chlorine to form...Ch. 13 - Prob. 13.24QECh. 13 - Prob. 13.25QECh. 13 - Prob. 13.26QECh. 13 - Prob. 13.27QECh. 13 - Prob. 13.28QECh. 13 - Prob. 13.29QECh. 13 - Prob. 13.30QECh. 13 - Prob. 13.31QECh. 13 - Prob. 13.32QECh. 13 - Prob. 13.33QECh. 13 - Write a rate law for NO3(g) + O2(g) NO2(g) +...Ch. 13 - Prob. 13.35QECh. 13 - Prob. 13.36QECh. 13 - Prob. 13.37QECh. 13 - Rate data were obtained at 25 C for the following...Ch. 13 - Prob. 13.39QECh. 13 - Prob. 13.40QECh. 13 - Prob. 13.41QECh. 13 - Prob. 13.42QECh. 13 - Prob. 13.43QECh. 13 - Prob. 13.44QECh. 13 - Prob. 13.45QECh. 13 - Prob. 13.46QECh. 13 - Prob. 13.47QECh. 13 - Prob. 13.48QECh. 13 - When formic acid is heated, it decomposes to...Ch. 13 - Prob. 13.50QECh. 13 - The half-life of tritium, 3H, is 12.26 years....Ch. 13 - Prob. 13.52QECh. 13 - Prob. 13.53QECh. 13 - Prob. 13.54QECh. 13 - Prob. 13.55QECh. 13 - Prob. 13.56QECh. 13 - The decomposition of ozone is a second-order...Ch. 13 - Prob. 13.58QECh. 13 - Prob. 13.59QECh. 13 - Prob. 13.60QECh. 13 - A reaction rate doubles when the temperature...Ch. 13 - Prob. 13.62QECh. 13 - Prob. 13.63QECh. 13 - Prob. 13.64QECh. 13 - Prob. 13.65QECh. 13 - The activation energy for the decomposition of...Ch. 13 - Prob. 13.67QECh. 13 - Prob. 13.68QECh. 13 - Prob. 13.69QECh. 13 - Prob. 13.70QECh. 13 - Prob. 13.71QECh. 13 - Prob. 13.72QECh. 13 - Prob. 13.73QECh. 13 - Prob. 13.74QECh. 13 - Prob. 13.75QECh. 13 - Prob. 13.76QECh. 13 - Prob. 13.77QECh. 13 - Prob. 13.78QECh. 13 - Prob. 13.79QECh. 13 - Prob. 13.80QECh. 13 - The gas-phase reaction of nitrogen monoxide with...Ch. 13 - Prob. 13.82QECh. 13 - Prob. 13.83QECh. 13 - A catalyst reduces the activation energy of a...Ch. 13 - Prob. 13.85QECh. 13 - Prob. 13.86QECh. 13 - Prob. 13.87QECh. 13 - Prob. 13.88QECh. 13 - Prob. 13.89QECh. 13 - Prob. 13.90QECh. 13 - Prob. 13.91QECh. 13 - Prob. 13.92QECh. 13 - Prob. 13.93QECh. 13 - Prob. 13.94QECh. 13 - Prob. 13.95QECh. 13 - Prob. 13.96QECh. 13 - Prob. 13.98QECh. 13 - Prob. 13.99QE
Knowledge Booster
Similar questions
- Write a rate law for NO3(g) + O2(g) NO2(g) + O3(g) if measurements show the reaction is first order in nitrogen trioxide and second order in oxygen.arrow_forwardExplain how a species might be part of a rate law but not part of a balanced chemical reaction.arrow_forwardThe Raschig reaction produces the industrially important reducing agent hydrazine, N2H4, from ammonia, NH3, and hypochlorite ion, OCl−, in basic aqueous solution. A proposed mechanism is Step 1: Step 2: Step 3: What is the overall stoichiometric equation? Which step is rate-limiting? What reaction intermediates are involved? What rate law is predicted by this mechanism?arrow_forward
- Cobra venom helps the snake secure food by binding to acetylcholine receptors on the diaphragm of a bite victim, leading to the loss of function of the diaphragm muscle tissue and eventually death. In order to develop more potent antivenins, scientists have studied what happens to the toxin once it has bound the acetylcholine receptors. They have found that the toxin is released from the receptor in a process that can be described by the rate law Rate = k [acetylcholine receptortoxin complex] If the activation energy of this reaction at 37.0C is 26.2 kJ/mol and A = 0.850 s1. what is the rate of reaction if you have a 0.200M solution of receptor-toxin complex at 37.0C?arrow_forwardOne experimental procedure that can be used to determine the rate law of a reaction is the method of initial rates. What data are gathered in the method of initial rates, and how are these data manipulated to determine k and the orders of the species in the rate law? Are the units for k. the rate constant, the same for all rate laws? Explain. If a reaction is first order in A, what happens to the rate if [A] is tripled? If the initial rate for a reaction increases by a factor of 16 when [A] is quadrupled, what is the order of n? If a reaction is third order in A and [A] is doubled, what happens to the initial rate? If a reaction is zero order, what effect does [A] have on the initial rate of a reaction?arrow_forwardAt 573 K, gaseous NO2(g) decomposes, forming NO(g) and O2(g). If a vessel containing NO2(g) has an initial concentration of 1.9 102 mol/L, how long will it take for 75% of the NO2(g) to decompose? The decomposition of NO2(g) is second-order in the reactant and the rate constant for this reaction, at 573 K, is 1.1 L/mol s.arrow_forward
- The decomposition of iodoethane in the gas phase proceeds according to the following equation: C2H5I(g)C2H4(g)+HI(g) At 660. K, k = 7.2 104 sl; at 720. K, k = 1.7 102 sl. What is the value of the rate constant for this first-order decomposition at 325C? If the initial pressure of iodoethane is 894 torr at 245C, what is the pressure of iodoethane after three half-lives?arrow_forwardWhen phenacyl bromide and pyridine are both dissolved in methanol, they react to form phenacylpyridinium bromide. When equal concentrations of reactants were mixed in methanol at 35 C, these data were obtained: (a) Determine the rate law for this reaction. (b) Determine the overall order of this reaction. (c) Determine the rate constant for this reaction. (d) Determine the rate constant for this reaction when the concentration of each reactant is 0.030 mol/L.arrow_forwardThe data below were collected for the following reaction at 35° C: 2(CH3)3 CSOH(g) → (CH3)3CS(O)SC(CH3)3 (g) Time (min) [(CH3)3 CSOH] (mol · L−¹) 0.0 1.554 10.8 0.661 19.1 0.343 37.0 0.083 59.5 0.014 75.1 0.004 Part C From the slope of the appropriate plot, determine the value of the rate constant at this temperature. VG ΑΣΦ Submit Request Answer ? 5-1arrow_forward
- The reaction between chlorine monoxide and nitrogen dioxide CIO(g) + NO₂(g) + M(g) → CIONO2(g) + M(g) produces chlorine nitrate (CIONO2). A third molecule (M) takes part in the reaction but is unchanged by it (it remains "M" as a reactant and as a product). The reaction is first order in [CIO] and [NO₂]. What is the rate law of the reaction? O Rate = = k[CIO][NO₂] [M] =k[CIONO₂] O Rate = O Rate = k[CIONO₂] [M] O Rate = k[CIO][NO₂] [M] O Rate = k[CIONO₂][M] O Rate = k[CIO][NO₂] Indicate the reaction order with respect to M. O Zero order with respect to M O Impossible to determine the order with respect to M O First order with respect to M Hint: Knowing that the reaction is first order in both NO₂ and CIO means that the exponent for the concentrations in the rate law for both of these reactants is 1. Because no dependence on the rate was given in the problem for M, we can assume that changing [M] does not affect the rate of the reaction. Question Help: Read Submit Questionarrow_forwardThe reaction rate for the decomposition of N2O5 to form NO2 and O, was studied as a function of temperature. The first order reaction rate constants were found to be: I (K) k(s²) 273 7.9 x 107 298 3.5 x 105 308 1.4 x 104 318 5.0 x 104 328 1.5 x 10 3 338 4.9 x 103 What is the E, for this reaction in kJ/mol? Use Excel to plot the pertinent data and use linear regression to calculate the slope of the line connecting your data. Round your answer to 2 decimal places.arrow_forwardThe rate constant for the first-order decomposition of N2O5 in the reaction 2 N2O5(g) → 4 NO2(g) + O2(g) is kr = 3.38 × 10−5 s−1 at 25 °C. What is the half-life of N2O5? If the initial partial pressure of N2O5 is 500 Torr, what will its partial pressure be (i) 50 s, (ii) 20 min after initiation of the reaction?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning