Chemistry: Principles and Practice
3rd Edition
ISBN: 9780534420123
Author: Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 13, Problem 13.87QE
(a)
Interpretation Introduction
Interpretation:
The order of the decomposition of hydrogen peroxide has to be determined.
(b)
Interpretation Introduction
Interpretation:
Rate law for the decomposition of hydrogen peroxide has to be determined.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
Chemistry: Principles and Practice
Ch. 13 - Prob. 13.1QECh. 13 - Prob. 13.2QECh. 13 - What is the difference between the integrated and...Ch. 13 - Prob. 13.4QECh. 13 - Explain why half-lives are not normally used to...Ch. 13 - Derive an expression for the half-life of a...Ch. 13 - Prob. 13.7QECh. 13 - Prob. 13.8QECh. 13 - Prob. 13.9QECh. 13 - Prob. 13.10QE
Ch. 13 - Prob. 13.11QECh. 13 - Prob. 13.12QECh. 13 - Prob. 13.13QECh. 13 - Prob. 13.14QECh. 13 - Prob. 13.15QECh. 13 - Prob. 13.16QECh. 13 - Prob. 13.17QECh. 13 - Prob. 13.18QECh. 13 - Prob. 13.19QECh. 13 - Prob. 13.20QECh. 13 - Prob. 13.21QECh. 13 - Prob. 13.22QECh. 13 - Nitrogen monoxide reacts with chlorine to form...Ch. 13 - Prob. 13.24QECh. 13 - Prob. 13.25QECh. 13 - Prob. 13.26QECh. 13 - Prob. 13.27QECh. 13 - Prob. 13.28QECh. 13 - Prob. 13.29QECh. 13 - Prob. 13.30QECh. 13 - Prob. 13.31QECh. 13 - Prob. 13.32QECh. 13 - Prob. 13.33QECh. 13 - Write a rate law for NO3(g) + O2(g) NO2(g) +...Ch. 13 - Prob. 13.35QECh. 13 - Prob. 13.36QECh. 13 - Prob. 13.37QECh. 13 - Rate data were obtained at 25 C for the following...Ch. 13 - Prob. 13.39QECh. 13 - Prob. 13.40QECh. 13 - Prob. 13.41QECh. 13 - Prob. 13.42QECh. 13 - Prob. 13.43QECh. 13 - Prob. 13.44QECh. 13 - Prob. 13.45QECh. 13 - Prob. 13.46QECh. 13 - Prob. 13.47QECh. 13 - Prob. 13.48QECh. 13 - When formic acid is heated, it decomposes to...Ch. 13 - Prob. 13.50QECh. 13 - The half-life of tritium, 3H, is 12.26 years....Ch. 13 - Prob. 13.52QECh. 13 - Prob. 13.53QECh. 13 - Prob. 13.54QECh. 13 - Prob. 13.55QECh. 13 - Prob. 13.56QECh. 13 - The decomposition of ozone is a second-order...Ch. 13 - Prob. 13.58QECh. 13 - Prob. 13.59QECh. 13 - Prob. 13.60QECh. 13 - A reaction rate doubles when the temperature...Ch. 13 - Prob. 13.62QECh. 13 - Prob. 13.63QECh. 13 - Prob. 13.64QECh. 13 - Prob. 13.65QECh. 13 - The activation energy for the decomposition of...Ch. 13 - Prob. 13.67QECh. 13 - Prob. 13.68QECh. 13 - Prob. 13.69QECh. 13 - Prob. 13.70QECh. 13 - Prob. 13.71QECh. 13 - Prob. 13.72QECh. 13 - Prob. 13.73QECh. 13 - Prob. 13.74QECh. 13 - Prob. 13.75QECh. 13 - Prob. 13.76QECh. 13 - Prob. 13.77QECh. 13 - Prob. 13.78QECh. 13 - Prob. 13.79QECh. 13 - Prob. 13.80QECh. 13 - The gas-phase reaction of nitrogen monoxide with...Ch. 13 - Prob. 13.82QECh. 13 - Prob. 13.83QECh. 13 - A catalyst reduces the activation energy of a...Ch. 13 - Prob. 13.85QECh. 13 - Prob. 13.86QECh. 13 - Prob. 13.87QECh. 13 - Prob. 13.88QECh. 13 - Prob. 13.89QECh. 13 - Prob. 13.90QECh. 13 - Prob. 13.91QECh. 13 - Prob. 13.92QECh. 13 - Prob. 13.93QECh. 13 - Prob. 13.94QECh. 13 - Prob. 13.95QECh. 13 - Prob. 13.96QECh. 13 - Prob. 13.98QECh. 13 - Prob. 13.99QE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- At 573 K, gaseous NO2(g) decomposes, forming NO(g) and O2(g). If a vessel containing NO2(g) has an initial concentration of 1.9 102 mol/L, how long will it take for 75% of the NO2(g) to decompose? The decomposition of NO2(g) is second-order in the reactant and the rate constant for this reaction, at 573 K, is 1.1 L/mol s.arrow_forwardThe Raschig reaction produces the industrially important reducing agent hydrazine, N2H4, from ammonia, NH3, and hypochlorite ion, OCl−, in basic aqueous solution. A proposed mechanism is Step 1: Step 2: Step 3: What is the overall stoichiometric equation? Which step is rate-limiting? What reaction intermediates are involved? What rate law is predicted by this mechanism?arrow_forwardThe hydrolysis of the sugar sucrose to the sugars glucose and fructose, C12H22O11+H2OC6H12O6+C6H12O6 follows a first-order rate equation for the disappearance of sucrose: Rate =k[C12H22O11] (The products of the reaction, glucose and fructose, have the same molecular formulas but differ in the arrangement of the atoms in their molecules.) (a) In neutral solution, k=2.11011s1 at 27 C and 8.51011s1 at 37 C. Determine the activation energy, the frequency factor, and the rate constant for this equation at 47 C (assuming the kinetics remain consistent with the Arrhenius equation at this temperature). (b) When a solution of sucrose with an initial concentration of 0.150 M reaches equilibrium, the concentration of sucrose is 1.65107M . How long will it take the solution to reach equilibrium at 27 C in the absence of a catalyst? Because the concentration of sucrose at equilibrium is so low, assume that the reaction is irreversible. (c) Why does assuming that the reaction is irreversible simplify the calculation in pan (b)?arrow_forward
- The decomposition of iodoethane in the gas phase proceeds according to the following equation: C2H5I(g)C2H4(g)+HI(g) At 660. K, k = 7.2 104 sl; at 720. K, k = 1.7 102 sl. What is the value of the rate constant for this first-order decomposition at 325C? If the initial pressure of iodoethane is 894 torr at 245C, what is the pressure of iodoethane after three half-lives?arrow_forwardAt 500 K in the presence of a copper surface, ethanol decomposes according to the equation C2H5OH(g)CH3CHO(g)+H2(g) The pressure of C2H5OH was measured as a function of time and the following data were obtained: Time(s) PC2H5OH(torr) 0 250. 100. 237 200. 224 300. 211 400. 198 500. 185 Since the pressure of a gas is directly proportional to the concentration of gas, we can express the rate law for a gaseous reaction in terms of partial pressures. Using the above data, deduce the rate law, the integrated rate law, and the value of the rate constant, all in terms of pressure units in atm and time in seconds. Predict the pressure of C2H5OH after 900. s from the start of the reaction. (Hint: To determine the order of the reaction with respect to C2H5OH, compare how the pressure of C2H5OH decreases with each time listing.)arrow_forwardFor the reaction of phenyl acetate with water the concentration as a function of time was given in Question 11. Assume that the concentration of water does not change during the reaction. Analyze the data from Question 11 to determine (a) the rate law. (b) the order of the reaction with respect to phenyl acetate. (c) the rate constant. (d) the rate of reaction when the concentration of phenyl acetate is 0.10 mol/L (assuming that the concentration of water is the same as in the experiments in the table in Question 11).arrow_forward
- Hydrogen iodide decomposes when heated, forming H2(g) and I2(g). The rate law for this reaction is [HI]/t = k[HI]2. At 443C, k = 30. L/mol min. If the initial HI(g) concentration is 1.5 102 mol/L, what concentration of HI(g) will remain after 10. minutes?arrow_forwardWhen boron trifluoride reacts with ammonia, the following reaction occurs: BF3(g)+NH3(g)BF3NH3(g)The following data are obtained at a particular temperature: (a) What is the order of the reaction with respect to BF3, NH3, and overall? (b) Write the rate expression for the reaction. (c) Calculate k for the reaction. (d) When [ BF3 ]=0.533M and NH3=0.300M, what is the rate of the reaction at the temperature of the experiment?arrow_forwardWhen phenacyl bromide and pyridine are both dissolved in methanol, they react to form phenacylpyridinium bromide. When equal concentrations of reactants were mixed in methanol at 35 C, these data were obtained: (a) Determine the rate law for this reaction. (b) Determine the overall order of this reaction. (c) Determine the rate constant for this reaction. (d) Determine the rate constant for this reaction when the concentration of each reactant is 0.030 mol/L.arrow_forward
- Many biochemical reactions are catalyzed by acids. A typical mechanism consistent with the experimental results (in which HA is the acid and X is the reactant) is Step 1: Step 2: Step 3: Derive the rate law from this mechanism. Determine the order of reaction with respect to HA. Determine how doubling the concentration of HA would affect the rate of the reaction.arrow_forwardOne experimental procedure that can be used to determine the rate law of a reaction is the method of initial rates. What data are gathered in the method of initial rates, and how are these data manipulated to determine k and the orders of the species in the rate law? Are the units for k. the rate constant, the same for all rate laws? Explain. If a reaction is first order in A, what happens to the rate if [A] is tripled? If the initial rate for a reaction increases by a factor of 16 when [A] is quadrupled, what is the order of n? If a reaction is third order in A and [A] is doubled, what happens to the initial rate? If a reaction is zero order, what effect does [A] have on the initial rate of a reaction?arrow_forwardThe label on a bottle of 3% (by volume) hydrogen peroxide, H2O2, purchased at a grocery store, states that the solution should be stored in a cool, dark place. H2O2decomposes slowly over time, and the rate of decomposition increases with an increase in temperature and in the presence of light. However, the rate of decomposition increases dramatically if a small amount of powdered MnO- is added to the solution. The decomposition products are H2O and O2. MnO2 is not consumed in the reaction. Write the equation for the decomposition of H2O2. What role does MnO2 play? In the chemistry lab, a student substituted a chunk of MnO2 for the powdered compound. The reaction rate was not appreciably increased. WTiat is one possible explanation for this observation? Is MnO2 part of the stoichiometry of the decomposition of H2O2?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Kinetics: Initial Rates and Integrated Rate Laws; Author: Professor Dave Explains;https://www.youtube.com/watch?v=wYqQCojggyM;License: Standard YouTube License, CC-BY