
Interpretation:
Rate law and the rate constant for the gas-phase reaction of nitrogen dioxide with ozone has to be given.

Answer to Problem 13.41QE
Rate law for the given reaction is
Explanation of Solution
The reaction between nitrogen dioxide and ozone to produce nitrogen trioxide and oxygen is given be the equation shown below;
Relative concentration of the reactant is determined by dividing the concentration of each reactant by the smallest concentration of the reactant. Relative rate of the reaction is determined by dividing the rate of the reaction by the smallest rate that is obtained from the experimental data.
The relative concentration of
Expt | Initial | Initial | Initial rate of the reaction | Relative | Relative | Relative rates of the reaction |
From the above table, it is found that in experiments 1, and 2, the concentration of ozone remains constant while the relative rate of the reaction increases in relative manner as the concentration of
From the above table, it is found that in experiments 3, and 4, the concentration of nitrogen dioxide remains constant while the relative rate of the reaction doubles as the concentration of
Rate law:
Rate law is the relationship between the concentration of the reactants and the rate of the reaction. The rate law equation is given as the rate of the reaction that is directly proportional to the product of the reactant concentration that is raised to the power of the respective reactant coefficient. Therefore, the rate law for the given reaction is as follows;
Where,
Rate constant:
The rate constant for the reaction can be calculated from the rate law using the initial concentration of the reactants as shown below;
Rearranging the above equation in order to calculate the rate constant;
Substituting the values for rate and the concentration of the reactants in the above equation, the rate constant of the reaction is calculated as shown below;
Therefore, the rate constant for the reaction is
Want to see more full solutions like this?
Chapter 13 Solutions
Chemistry: Principles and Practice
- > You are trying to decide if there is a single reagent you can add that will make the following synthesis possible without any other major side products: 1. ☑ CI 2. H3O+ O Draw the missing reagent X you think will make this synthesis work in the drawing area below. If there is no reagent that will make your desired product in good yield or without complications, just check the box under the drawing area and leave it blank. Click and drag to start drawing a structure. Explanation Check ? DO 18 Ar B © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibilityarrow_forwardDon't use ai to answer I will report you answerarrow_forwardConsider a solution of 0.00304 moles of 4-nitrobenzoic acid (pKa = 3.442) dissolved in 25 mL water and titrated with 0.0991 M NaOH. Calculate the pH at the equivalence pointarrow_forward
- What is the name of the following compound? SiMe3arrow_forwardK Draw the starting structure that would lead to the major product shown under the provided conditions. Drawing 1. NaNH2 2. PhCH2Br 4 57°F Sunny Q Searcharrow_forward7 Draw the starting alkyl bromide that would produce this alkyne under these conditions. F Drawing 1. NaNH2, A 2. H3O+ £ 4 Temps to rise Tomorrow Q Search H2arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning




