Interpretation:
Rate law and the rate constant for the gas-phase reaction of nitrogen dioxide with ozone has to be given.
Answer to Problem 13.41QE
Rate law for the given reaction is
Explanation of Solution
The reaction between nitrogen dioxide and ozone to produce nitrogen trioxide and oxygen is given be the equation shown below;
Relative concentration of the reactant is determined by dividing the concentration of each reactant by the smallest concentration of the reactant. Relative rate of the reaction is determined by dividing the rate of the reaction by the smallest rate that is obtained from the experimental data.
The relative concentration of
Expt | Initial | Initial | Initial rate of the reaction | Relative | Relative | Relative rates of the reaction |
From the above table, it is found that in experiments 1, and 2, the concentration of ozone remains constant while the relative rate of the reaction increases in relative manner as the concentration of
From the above table, it is found that in experiments 3, and 4, the concentration of nitrogen dioxide remains constant while the relative rate of the reaction doubles as the concentration of
Rate law:
Rate law is the relationship between the concentration of the reactants and the rate of the reaction. The rate law equation is given as the rate of the reaction that is directly proportional to the product of the reactant concentration that is raised to the power of the respective reactant coefficient. Therefore, the rate law for the given reaction is as follows;
Where,
Rate constant:
The rate constant for the reaction can be calculated from the rate law using the initial concentration of the reactants as shown below;
Rearranging the above equation in order to calculate the rate constant;
Substituting the values for rate and the concentration of the reactants in the above equation, the rate constant of the reaction is calculated as shown below;
Therefore, the rate constant for the reaction is
Want to see more full solutions like this?
Chapter 13 Solutions
Chemistry: Principles and Practice
- Comment on the following paragraph. In halides, MXn stoichiometry does not require a value of n so large as to prevent the approach of M+ ions, for steric or electrostatic reasons.arrow_forwardExplain Wade's rules, Indicate what the letters S and n represent in the formula.arrow_forwardShow work. Don't give Ai generated solutionarrow_forward
- Hi, I need help on my practice final, If you could offer strategies and dumb it down for me with an explanation on how to solve that would be amazing and beneficial.arrow_forwardHi I need help with my practice final, it would be really helpful to offer strategies on how to solve it, dumb it down, and a detailed explanation on how to approach future similar problems like this. The devil is in the details and this would be extremely helpfularrow_forwardIn alpha-NbI4, Nb4+ should have the d1 configuration (bond with paired electrons: paramagnetic). Please comment.arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning