Interpretation:
The instantaneous rate for the change of other species has to be calculated and also the instantaneous
Answer to Problem 13.31QE
Instantaneous rate of appearance of water is
Explanation of Solution
The reaction that is given in the problem statement is shown below;
From the above equation, it is found that the stoichiometric relationship between
The instantaneous rate of formation of
Therefore, the appearance rate of water will be
The instantaneous rate of disappearance of
Therefore, the instantaneous disappearance rate of
The instantaneous rate of disappearance of
Therefore, the instantaneous disappearance rate of
The instantaneous rate of disappearance of
Therefore, the instantaneous disappearance rate of
Rate of the reaction can be found out by dividing the rate of appearance or disappearance of any species involved in the reaction by its coefficient. Therefore, the rate of the reaction can be calculated using the disappearance of hydroxide as shown below;
Therefore, the rate of the reaction is
Want to see more full solutions like this?
Chapter 13 Solutions
Chemistry: Principles and Practice
- Write a rate law for NO3(g) + O2(g) NO2(g) + O3(g) if measurements show the reaction is first order in nitrogen trioxide and second order in oxygen.arrow_forward. Account for the increase in reaction rate brought about by a catalyst.arrow_forwardConsider the reaction of ozone and nitrogen monoxide to form nitrogen dioxide and oxygen. O3(g) + NO(g) NO2(g) + O2(g) Which of the following orientations for the collision between ozone and nitrogen monoxide could perhaps lead to an effective collision between the molecules? (a) (b) (c) (d)arrow_forward
- The decomposition of iodoethane in the gas phase proceeds according to the following equation: C2H5I(g)C2H4(g)+HI(g) At 660. K, k = 7.2 104 sl; at 720. K, k = 1.7 102 sl. What is the value of the rate constant for this first-order decomposition at 325C? If the initial pressure of iodoethane is 894 torr at 245C, what is the pressure of iodoethane after three half-lives?arrow_forwardThe label on a bottle of 3% (by volume) hydrogen peroxide, H2O2, purchased at a grocery store, states that the solution should be stored in a cool, dark place. H2O2decomposes slowly over time, and the rate of decomposition increases with an increase in temperature and in the presence of light. However, the rate of decomposition increases dramatically if a small amount of powdered MnO- is added to the solution. The decomposition products are H2O and O2. MnO2 is not consumed in the reaction. Write the equation for the decomposition of H2O2. What role does MnO2 play? In the chemistry lab, a student substituted a chunk of MnO2 for the powdered compound. The reaction rate was not appreciably increased. WTiat is one possible explanation for this observation? Is MnO2 part of the stoichiometry of the decomposition of H2O2?arrow_forwardCandle wax is a mixture of hydrocarbons. In the reaction of oxygen with candle w ax in Figure 11.2, the rate of consumption of oxygen decreased with time after the flask was covered, and eventually' the flame went out. From the perspective of the kinetic-molecular theory, describe what is happening in the flask. FIGURE 11.2 When a candle burns in a closed container, the flame will diminish and eventually go out. As the amount of oxygen present decreases, the rate of combustion will also decrease. Eventually, the rate of combustion is no longer sufficient to sustain the flame even though there is still some oxygen present in the vessel.arrow_forward
- Based on the kinetic theory of matter, what would the action of a catalyst do to a reaction that is the reverse of some reaction that we say is catalyzed?arrow_forward(Section 11-5) A rule of thumb is that for a typical reaction, if concentrations are unchanged, a 10-K rise in temperature increases the reaction rate by two to four times. Use an average increase of three times to answer the questions below. (a) What is the approximate activation energy of a typical chemical reaction at 298 K? (b) If a catalyst increases a chemical reactions rate by providing a mechanism that has a lower activation energy, then what change do you expect a 10-K increase in temperature to make in the rate of a reaction whose uncatalyzed activation energy of 75 kJ/mol has been lowered to one half this value (at 298 K) by addition of a catalyst?arrow_forwardA reaction is started by mixing reactants. As time passes, the rate decreases. Explain this behavior that is characteristic of most reactions.arrow_forward
- Account for the relationship between the rate of a reaction and its activation energy.arrow_forwardFor the reaction of crystal violet with NaOH(aq), the measured rate of reaction is 1.27 106 mol L1 s1 when the concentration of crystal violet cation is 4.13 105 mol/L. (a) Estimate how long it will take for the concentration of crystal violet to drop from 4.30 105 mol/L to 3.96 105 mol/L. (b) Could you use the same method to make an accurate estimate of how long it would take for the concentration of crystal violet to drop from 4.30 105 mol/L to 0.43 105 mol/L? Explain why or why not.arrow_forwardIodomethane (CH3I) is a commonly used reagent in organic chemistry. When used properly, this reagent allows chemists to introduce methyl groups in many different useful applications. The chemical does pose a risk as a carcinogen, possibly owing to iodomethanes ability to react with portions of the DNA strand (if they were to come in contact). Consider the following hypothetical initial rates data: [DNA]0 ( mol/L) [CH3I]0 ( mol/L) Initial Rate (mol/Ls) 0.100 0.100 3.20 104 0.100 0.200 6.40 104 0.200 0.200 1.28 103 Which of the following could be a possible mechanism to explain the initial rate data? MechanismIDNA+CH3IDNACH3++IMechanismIICH3ICH3++ISlowDNA+CH3+DNACH3+Fastarrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning