![Bundle: General, Organic, and Biological Chemistry, 7th + OWLv2 Quick Prep for General Chemistry, 4 terms (24 months) Printed Access Card](https://www.bartleby.com/isbn_cover_images/9781305717534/9781305717534_largeCoverImage.gif)
Concept explainers
(a)
Interpretation:
The given statement concerning aromatic hydrocarbon are soluble in water has to be identified as true or false.
Concept Introduction:
Organic compounds are represented shortly by the molecular formula and structural formula. Each and every compound has its own molecular formula. Compounds can have same molecular formula but not same structural formula.
Regarding density, aromatic hydrocarbons have density lower than water. When aromatic hydrocarbons are mixed with water, two layers are formed which is a result of insolubility. Aromatic hydrocarbonds are present on top of water layer which is due to lesser density.
Aromatic hydrocarbons have more boiling point compared to noncyclic
(b)
Interpretation:
The given statement concerning aromatic hydrocarbon has to be identified as true or false.
Concept Introduction:
Organic compounds are represented shortly by the molecular formula and structural formula. Each and every compound has its own molecular formula. Compounds can have same molecular formula but not same structural formula.
Aromatic hydrocarbons are cyclic chain unsaturated hydrocarbons. They are nonpolar molecules. Water is a polar molecule. Therefore, aromatic hydrocarbons do not get solubilized in water. In other words, aromatic hydrocarbons are insoluble in water.
Regarding density, aromatic hydrocarbons have density lower than water. When aromatic hydrocarbons are mixed with water, two layers are formed which is a result of insolubility. Aromatic hydrocarbonds are present on top of water layer which is due to lesser density.
Aromatic hydrocarbons have more boiling point compared to noncyclic alkenes with the same number of carbon atoms. This is due to the more rigid and more symmetrical structures that occur in cyclic systems. Benzene is the lowest aromatic hydrocarbon that has physical state as liquid at room temperature.
(c)
Interpretation:
The given statement concerning aromatic hydrocarbon has to be identified as true or false.
Concept Introduction:
Organic compounds are represented shortly by the molecular formula and structural formula. Each and every compound has its own molecular formula. Compounds can have same molecular formula but not same structural formula.
Aromatic hydrocarbons are cyclic chain unsaturated hydrocarbons. They are nonpolar molecules. Water is a polar molecule. Therefore, aromatic hydrocarbons do not get solubilized in water. In other words, aromatic hydrocarbons are insoluble in water.
Regarding density, aromatic hydrocarbons have density lower than water. When aromatic hydrocarbons are mixed with water, two layers are formed which is a result of insolubility. Aromatic hydrocarbonds are present on top of water layer which is due to lesser density.
Aromatic hydrocarbons have more boiling point compared to noncyclic alkenes with the same number of carbon atoms. This is due to the more rigid and more symmetrical structures that occur in cyclic systems. Benzene is the lowest aromatic hydrocarbon that has physical state as liquid at room temperature.
(d)
Interpretation:
The given statement concerning aromatic hydrocarbon has to be identified as true or false.
Concept Introduction:
Organic compounds are represented shortly by the molecular formula and structural formula. Each and every compound has its own molecular formula. Compounds can have same molecular formula but not same structural formula.
Aromatic hydrocarbons are cyclic chain unsaturated hydrocarbons. They are nonpolar molecules. Water is a polar molecule. Therefore, aromatic hydrocarbons do not get solubilized in water. In other words, aromatic hydrocarbons are insoluble in water.
Regarding density, aromatic hydrocarbons have density lower than water. When aromatic hydrocarbons are mixed with water, two layers are formed which is a result of insolubility. Aromatic hydrocarbonds are present on top of water layer which is due to lesser density.
Aromatic hydrocarbons have more boiling point compared to noncyclic alkenes with the same number of carbon atoms. This is due to the more rigid and more symmetrical structures that occur in cyclic systems. Benzene is the lowest aromatic hydrocarbon that has physical state as liquid at room temperature.
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Chapter 13 Solutions
Bundle: General, Organic, and Biological Chemistry, 7th + OWLv2 Quick Prep for General Chemistry, 4 terms (24 months) Printed Access Card
- In general, which is more polar, the stationary phase or the mobile phase? The stationary phase is always more polar The mobile phase is always more polar It depends on our choices for both stationary and mobile phase Their polarity doesn't really matter so we never consider itarrow_forwardPlease helparrow_forwardDraw the mechanism of aspirin synthesis in an basic medium and in a neutral medium, showing the attacks and the process for the formation of the product.arrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning
- Introductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305081079/9781305081079_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285853918/9781285853918_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079250/9781305079250_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305960060/9781305960060_smallCoverImage.gif)