Question
Book Icon
Chapter 13, Problem 13.61EP

(a)

Interpretation Introduction

Interpretation:

The given statement concerning 2-butene has to be identified as true or false.

Concept Introduction:

Organic compounds are represented shortly by the molecular formula and structural formula.  Each and every compound has its own molecular formula.  Compounds can have same molecular formula but not same structural formula.

Alkenes are linear chain unsaturated hydrocarbons and cycloalkenes are cyclic carbon chain unsaturated hydrocarbons.  They both occur naturally.

Alkenes and cycloalkenes are hydrocarbons.  They are nonpolar molecules.  Water is a polar molecule.  Therefore, alkenes and cycloalkenes do not get solubilized in water.  In other words, alkenes and cycloalkenes are insoluble in water.

Regarding density, alkenes and cycloalkenes have density lower than water.  When alkenes and cycloalkenes are mixed with water, two layers are formed which is a result of insolubility.  Alkenes and cycloalkenes are present on top of water layer which is due to lesser density.

Boiling point of alkenes and cycloalkenes increase with an increase in carbon‑chain length or the ring size.  The continuous chain alkenes which contain two to four carbon atoms are gases at room temperature.  The continuous chain alkenes that contain five to seventeen carbon atoms and one double bond are liquids at room temperature.

When branching happens in the carbon chain, it lowers the boiling point of alkenes.  In simple words, unbranched alkenes have more boiling point than branched alkenes with the same number of carbon atoms.

Cycloalkenes have more boiling point compared to noncyclic alkenes with the same number of carbon atoms.  This is due to the more rigid and more symmetrical structures that occur in cyclic systems.  Cyclopropene and cyclobutene are relatively unstable compound and gets converted into other hydrocarbons.

(b)

Interpretation Introduction

Interpretation:

The given statement concerning 2-butene has to be identified as true or false.

Concept Introduction:

Organic compounds are represented shortly by the molecular formula and structural formula.  Each and every compound has its own molecular formula.  Compounds can have same molecular formula but not same structural formula.

Alkenes are linear chain unsaturated hydrocarbons and cycloalkenes are cyclic carbon chain unsaturated hydrocarbons.  They both occur naturally.

Alkenes and cycloalkenes are hydrocarbons.  They are nonpolar molecules.  Water is a polar molecule.  Therefore, alkenes and cycloalkenes do not get solubilized in water.  In other words, alkenes and cycloalkenes are insoluble in water.

Regarding density, alkenes and cycloalkenes have density lower than water.  When alkenes and cycloalkenes are mixed with water, two layers are formed which is a result of insolubility.  Alkenes and cycloalkenes are present on top of water layer which is due to lesser density.

Boiling point of alkenes and cycloalkenes increase with an increase in carbon‑chain length or the ring size.  The continuous chain alkenes which contain two to four carbon atoms are gases at room temperature.  The continuous chain alkenes that contain five to seventeen carbon atoms and one double bond are liquids at room temperature.

When branching happens in the carbon chain, it lowers the boiling point of alkenes.  In simple words, unbranched alkenes have more boiling point than branched alkenes with the same number of carbon atoms.

Cycloalkenes have more boiling point compared to noncyclic alkenes with the same number of carbon atoms.  This is due to the more rigid and more symmetrical structures that occur in cyclic systems.  Cyclopropene and cyclobutene are relatively unstable compound and gets converted into other hydrocarbons.

(c)

Interpretation Introduction

Interpretation:

The given statement concerning 2-butene has to be identified as true or false.

Concept Introduction:

Organic compounds are represented shortly by the molecular formula and structural formula.  Each and every compound has its own molecular formula.  Compounds can have same molecular formula but not same structural formula.

Alkenes are linear chain unsaturated hydrocarbons and cycloalkenes are cyclic carbon chain unsaturated hydrocarbons.  They both occur naturally.

Alkenes and cycloalkenes are hydrocarbons.  They are nonpolar molecules.  Water is a polar molecule.  Therefore, alkenes and cycloalkenes do not get solubilized in water.  In other words, alkenes and cycloalkenes are insoluble in water.

Regarding density, alkenes and cycloalkenes have density lower than water.  When alkenes and cycloalkenes are mixed with water, two layers are formed which is a result of insolubility.  Alkenes and cycloalkenes are present on top of water layer which is due to lesser density.

Boiling point of alkenes and cycloalkenes increase with an increase in carbon‑chain length or the ring size.  The continuous chain alkenes which contain two to four carbon atoms are gases at room temperature.  The continuous chain alkenes that contain five to seventeen carbon atoms and one double bond are liquids at room temperature.

When branching happens in the carbon chain, it lowers the boiling point of alkenes.  In simple words, unbranched alkenes have more boiling point than branched alkenes with the same number of carbon atoms.

Cycloalkenes have more boiling point compared to noncyclic alkenes with the same number of carbon atoms.  This is due to the more rigid and more symmetrical structures that occur in cyclic systems.  Cyclopropene and cyclobutene are relatively unstable compound and gets converted into other hydrocarbons.

(d)

Interpretation Introduction

Interpretation:

The given statement concerning 2-butene has to be identified as true or false.

Concept Introduction:

Organic compounds are represented shortly by the molecular formula and structural formula.  Each and every compound has its own molecular formula.  Compounds can have same molecular formula but not same structural formula.

Alkenes are linear chain unsaturated hydrocarbons and cycloalkenes are cyclic carbon chain unsaturated hydrocarbons.  They both occur naturally.

Alkenes and cycloalkenes are hydrocarbons.  They are nonpolar molecules.  Water is a polar molecule.  Therefore, alkenes and cycloalkenes do not get solubilized in water.  In other words, alkenes and cycloalkenes are insoluble in water.

Regarding density, alkenes and cycloalkenes have density lower than water.  When alkenes and cycloalkenes are mixed with water, two layers are formed which is a result of insolubility.  Alkenes and cycloalkenes are present on top of water layer which is due to lesser density.

Boiling point of alkenes and cycloalkenes increase with an increase in carbon‑chain length or the ring size.  The continuous chain alkenes which contain two to four carbon atoms are gases at room temperature.  The continuous chain alkenes that contain five to seventeen carbon atoms and one double bond are liquids at room temperature.

When branching happens in the carbon chain, it lowers the boiling point of alkenes.  In simple words, unbranched alkenes have more boiling point than branched alkenes with the same number of carbon atoms.

Cycloalkenes have more boiling point compared to noncyclic alkenes with the same number of carbon atoms.  This is due to the more rigid and more symmetrical structures that occur in cyclic systems.  Cyclopropene and cyclobutene are relatively unstable compound and gets converted into other hydrocarbons.

Blurred answer
Students have asked these similar questions
Transcription and Translation 1. What is the main function of transcription and translation? (2 marks) 2. How is transcription different in eukaryotic and prokaryotic cells? (2 marks) 3. Explain the difference between pre-mRNA and post-transcript mRNA. (2 marks) 4. What is the function of the following: (4 marks) i. the cap ii. spliceosome iii. Poly A tail iv. termination sequence 5. What are advantages to the wobble feature of the genetic code? (2 marks) 6. Explain the difference between the: (3 marks) i. A site & P site ii. codon & anticodon iii. gene expression and gene regulation 7. Explain how the stop codon allows for termination. (1 mark) 8. In your own words, summarize the process of translation. (2 marks)
In this activity you will research performance enhancers that affect the endocrine system or nervous system. You will submit a 1 page paper on one performance enhancer of your choice. Be sure to include: the specific reason for use the alleged results on improving performance how it works how it affect homeostasis and improves performance any side-effects of this substance
Neurons and Reflexes 1. Describe the function of the: a) dendrite b) axon c) cell body d) myelin sheath e) nodes of Ranvier f) Schwann cells g) motor neuron, interneuron and sensory neuron 2. List some simple reflexes. Explain why babies are born with simple reflexes. What are they and why are they necessary. 3. Explain why you only feel pain after a few seconds when you touch something very hot but you have already pulled your hand away. 4. What part of the brain receives sensory information? What part of the brain directs you to move your hand away? 5. In your own words describe how the axon fires.

Chapter 13 Solutions

Bundle: General, Organic, and Biological Chemistry, 7th + OWLv2 Quick Prep for General Chemistry, 4 terms (24 months) Printed Access Card

Ch. 13.3 - Prob. 4QQCh. 13.4 - Prob. 1QQCh. 13.4 - Prob. 2QQCh. 13.5 - Prob. 1QQCh. 13.5 - Prob. 2QQCh. 13.5 - Prob. 3QQCh. 13.6 - Prob. 1QQCh. 13.6 - Prob. 2QQCh. 13.6 - Prob. 3QQCh. 13.7 - Prob. 1QQCh. 13.7 - Prob. 2QQCh. 13.7 - Prob. 3QQCh. 13.8 - Prob. 1QQCh. 13.8 - Prob. 2QQCh. 13.9 - Prob. 1QQCh. 13.9 - Prob. 2QQCh. 13.10 - Prob. 1QQCh. 13.10 - Prob. 2QQCh. 13.10 - Prob. 3QQCh. 13.10 - Prob. 4QQCh. 13.10 - Prob. 5QQCh. 13.11 - Prob. 1QQCh. 13.11 - Prob. 2QQCh. 13.11 - Prob. 3QQCh. 13.11 - Prob. 4QQCh. 13.11 - Prob. 5QQCh. 13.12 - Prob. 1QQCh. 13.12 - Prob. 2QQCh. 13.12 - Prob. 3QQCh. 13.12 - Prob. 4QQCh. 13.12 - Prob. 5QQCh. 13.13 - Prob. 1QQCh. 13.13 - Prob. 2QQCh. 13.13 - Prob. 3QQCh. 13.14 - Prob. 1QQCh. 13.14 - Prob. 2QQCh. 13.14 - Prob. 3QQCh. 13.14 - Prob. 4QQCh. 13.15 - Prob. 1QQCh. 13.15 - Prob. 2QQCh. 13.15 - Prob. 3QQCh. 13.15 - Prob. 4QQCh. 13.16 - Prob. 1QQCh. 13.16 - Prob. 2QQCh. 13 - Classify each of the following hydrocarbons as...Ch. 13 - Classify each of the following hydrocarbons as...Ch. 13 - Prob. 13.3EPCh. 13 - Prob. 13.4EPCh. 13 - Prob. 13.5EPCh. 13 - Prob. 13.6EPCh. 13 - Prob. 13.7EPCh. 13 - Prob. 13.8EPCh. 13 - Prob. 13.9EPCh. 13 - What is the molecular formula for each of the...Ch. 13 - Prob. 13.11EPCh. 13 - Prob. 13.12EPCh. 13 - What is wrong, if anything, with the following...Ch. 13 - Prob. 13.14EPCh. 13 - Prob. 13.15EPCh. 13 - Prob. 13.16EPCh. 13 - Prob. 13.17EPCh. 13 - Prob. 13.18EPCh. 13 - Draw a condensed structural formula for each of...Ch. 13 - Draw a condensed structural formula for each of...Ch. 13 - The following names are incorrect by IUPAC rules....Ch. 13 - The following names are incorrect by IUPAC rules....Ch. 13 - Prob. 13.23EPCh. 13 - Prob. 13.24EPCh. 13 - Prob. 13.25EPCh. 13 - Classify each of the following compounds as...Ch. 13 - Prob. 13.27EPCh. 13 - How many hydrogen atoms are present in a molecule...Ch. 13 - Prob. 13.29EPCh. 13 - Draw a line-angle structural formula for each of...Ch. 13 - Prob. 13.31EPCh. 13 - Prob. 13.32EPCh. 13 - Prob. 13.33EPCh. 13 - Prob. 13.34EPCh. 13 - Prob. 13.35EPCh. 13 - Prob. 13.36EPCh. 13 - Prob. 13.37EPCh. 13 - Prob. 13.38EPCh. 13 - For each of the following pairs of alkenes,...Ch. 13 - Prob. 13.40EPCh. 13 - Prob. 13.41EPCh. 13 - Prob. 13.42EPCh. 13 - Prob. 13.43EPCh. 13 - Prob. 13.44EPCh. 13 - Prob. 13.45EPCh. 13 - Prob. 13.46EPCh. 13 - For each molecule, indicate whether cistrans...Ch. 13 - For each molecule, indicate whether cistrans...Ch. 13 - Prob. 13.49EPCh. 13 - Prob. 13.50EPCh. 13 - Prob. 13.51EPCh. 13 - Draw a structural formula for each of the...Ch. 13 - Prob. 13.53EPCh. 13 - Prob. 13.54EPCh. 13 - Prob. 13.55EPCh. 13 - Prob. 13.56EPCh. 13 - Prob. 13.57EPCh. 13 - Prob. 13.58EPCh. 13 - Why is the number of carbon atoms in a terpene...Ch. 13 - How many isoprene units are present in a....Ch. 13 - Prob. 13.61EPCh. 13 - Indicate whether each of the following statements...Ch. 13 - Prob. 13.63EPCh. 13 - With the help of Figure 13-7, indicate whether...Ch. 13 - Prob. 13.65EPCh. 13 - Prob. 13.66EPCh. 13 - Prob. 13.67EPCh. 13 - Prob. 13.68EPCh. 13 - Prob. 13.69EPCh. 13 - Prob. 13.70EPCh. 13 - Prob. 13.71EPCh. 13 - Prob. 13.72EPCh. 13 - Prob. 13.73EPCh. 13 - Prob. 13.74EPCh. 13 - Prob. 13.75EPCh. 13 - Write a chemical equation showing reactants,...Ch. 13 - Supply the structural formula of the product in...Ch. 13 - Prob. 13.78EPCh. 13 - What reactant would you use to prepare each of the...Ch. 13 - Prob. 13.80EPCh. 13 - Prob. 13.81EPCh. 13 - Prob. 13.82EPCh. 13 - Prob. 13.83EPCh. 13 - Prob. 13.84EPCh. 13 - Prob. 13.85EPCh. 13 - Prob. 13.86EPCh. 13 - Prob. 13.87EPCh. 13 - Prob. 13.88EPCh. 13 - Prob. 13.89EPCh. 13 - Prob. 13.90EPCh. 13 - Prob. 13.91EPCh. 13 - Prob. 13.92EPCh. 13 - Prob. 13.93EPCh. 13 - What are the bond angles about the triple bond in...Ch. 13 - Prob. 13.95EPCh. 13 - Prob. 13.96EPCh. 13 - Prob. 13.97EPCh. 13 - Prob. 13.98EPCh. 13 - Prob. 13.99EPCh. 13 - Prob. 13.100EPCh. 13 - Prob. 13.101EPCh. 13 - Prob. 13.102EPCh. 13 - Prob. 13.103EPCh. 13 - Prob. 13.104EPCh. 13 - Prob. 13.105EPCh. 13 - Prob. 13.106EPCh. 13 - Prob. 13.107EPCh. 13 - Prob. 13.108EPCh. 13 - Assign each of the compounds in Problem 13-107 an...Ch. 13 - Assign each of the compounds in Problem 13-108 an...Ch. 13 - Prob. 13.111EPCh. 13 - Prob. 13.112EPCh. 13 - Prob. 13.113EPCh. 13 - Prob. 13.114EPCh. 13 - Prob. 13.115EPCh. 13 - Write a structural formula for each of the...Ch. 13 - Eight isomeric substituted benzenes have the...Ch. 13 - Prob. 13.118EPCh. 13 - Prob. 13.119EPCh. 13 - Prob. 13.120EPCh. 13 - Prob. 13.121EPCh. 13 - Prob. 13.122EPCh. 13 - Prob. 13.123EPCh. 13 - Prob. 13.124EPCh. 13 - Prob. 13.125EPCh. 13 - For each of the following classes of compounds,...Ch. 13 - Prob. 13.127EPCh. 13 - Prob. 13.128EPCh. 13 - Prob. 13.129EPCh. 13 - Prob. 13.130EP
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Basic Clinical Laboratory Techniques 6E
Biology
ISBN:9781133893943
Author:ESTRIDGE
Publisher:Cengage
Text book image
BIOLOGY:CONCEPTS+APPL.(LOOSELEAF)
Biology
ISBN:9781305967359
Author:STARR
Publisher:CENGAGE L
Text book image
Body Structures & Functions Updated
Biology
ISBN:9780357191606
Author:Scott
Publisher:Cengage
Text book image
Body Structures & Functions
Biology
ISBN:9781285695495
Author:Scott
Publisher:Cengage
Text book image
Human Biology (MindTap Course List)
Biology
ISBN:9781305112100
Author:Cecie Starr, Beverly McMillan
Publisher:Cengage Learning
Text book image
Aquaculture Science
Biology
ISBN:9781133558347
Author:Parker
Publisher:Cengage