Chemical Principles
8th Edition
ISBN: 9781337247269
Author: Steven S. Zumdahl; Donald J. DeCoste
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12, Problem 96E
A certain oxygen atom has the electron configuration
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 12 Solutions
Chemical Principles
Ch. 12 - Prob. 1DQCh. 12 - Prob. 2DQCh. 12 - Prob. 3DQCh. 12 - The first four ionization energies for elements X...Ch. 12 - Prob. 5DQCh. 12 - Prob. 6DQCh. 12 - Prob. 7DQCh. 12 - Prob. 8DQCh. 12 - Prob. 9DQCh. 12 - Prob. 10DQ
Ch. 12 - Prob. 11DQCh. 12 - Prob. 12DQCh. 12 - Prob. 13DQCh. 12 - Prob. 14DQCh. 12 - Prob. 15DQCh. 12 - Prob. 16DQCh. 12 - Prob. 17DQCh. 12 - Is the following statement true or false: The...Ch. 12 - Which is higher in energy: the 2s or 2p orbital in...Ch. 12 - Prove mathematically that it is more energetically...Ch. 12 - Microwave radiation has a wavelength on the order...Ch. 12 - Consider the following waves representing...Ch. 12 - Prob. 23ECh. 12 - Human color vision is “produced” by the nervous...Ch. 12 - One type of electromagnetic radiation has a...Ch. 12 - Carbon absorbs energy at a wavelength of 150. nm....Ch. 12 - Prob. 27ECh. 12 - X rays have wavelengths on the order of 110-10m...Ch. 12 - The work function of an element is the energy...Ch. 12 - Ionization energy is the energy required to remove...Ch. 12 - It takes 208.4 kJ of energy to remove 1 mole of...Ch. 12 - What experimental evidence supports the quantum...Ch. 12 - Explain the photoelectric effect.Ch. 12 - Calculate the de Broglie wavelength for each of...Ch. 12 - Neutron diffraction is used in determining the...Ch. 12 - Calculate the velocities of electrons with de...Ch. 12 - An atom of a particular element is traveling at 1%...Ch. 12 - Characterize the Bohr model of the atom. In the...Ch. 12 - Prob. 39ECh. 12 - Consider only the transitions involving the first...Ch. 12 - Calculate the longest and shortest wavelengths of...Ch. 12 - Prob. 42ECh. 12 - Assume that a hydrogen atom’s electron has been...Ch. 12 - What is the maximum wavelength of light capable...Ch. 12 - An electron is excited from the ground state to...Ch. 12 - Does a photon of visible light (=400700nm)...Ch. 12 - An excited hydrogen atom emits light with a...Ch. 12 - An excited hydrogen atom with an electron in the n...Ch. 12 - Consider an electron for a hydrogen atom in an...Ch. 12 - Prob. 50ECh. 12 - One of the emission spectral lines for Be3+ has a...Ch. 12 - The Heisenberg uncertainty principle can be...Ch. 12 - Using the Heisenberg uncertainty principle,...Ch. 12 - We can represent both probability and radial...Ch. 12 - Prob. 55ECh. 12 - Calculate the wavelength of the electromagnetic...Ch. 12 - An electron in a one-dimensional box requires a...Ch. 12 - An electron in a 10.0-nm one-dimensional box is...Ch. 12 - Prob. 59ECh. 12 - What is the total probability of finding a...Ch. 12 - Which has the lowest (ground-state) energy, an...Ch. 12 - What are quantum numbers? What information do...Ch. 12 - How do 2p orbitals differ from each other? How do...Ch. 12 - Identify each of the following orbitals, and...Ch. 12 - Which of the following orbital designations are...Ch. 12 - Prob. 66ECh. 12 - The following sets of quantum numbers are not...Ch. 12 - How many orbitals can have the designation 5p,...Ch. 12 - How many electrons in an atom can have the...Ch. 12 - Prob. 70ECh. 12 - Prob. 71ECh. 12 - From the diagrams of 2p and 3p orbitals in Fig....Ch. 12 - Prob. 73ECh. 12 - Prob. 74ECh. 12 - Total radial probability distributions for the...Ch. 12 - The relative orbital levels for the hydrogen atom...Ch. 12 - What is the difference between core electrons and...Ch. 12 - Prob. 78ECh. 12 - Prob. 79ECh. 12 - The elements of Si, Ga, As, Ge, Al, Cd, S, and Se...Ch. 12 - Write the expected electron configurations for the...Ch. 12 - Write the expected electron configurations for...Ch. 12 - Prob. 83ECh. 12 - Using Fig. 12.29, list elements (ignore the...Ch. 12 - Prob. 85ECh. 12 - Prob. 86ECh. 12 - Prob. 87ECh. 12 - Prob. 88ECh. 12 - Prob. 89ECh. 12 - Prob. 90ECh. 12 - Prob. 91ECh. 12 - Prob. 92ECh. 12 - Prob. 93ECh. 12 - Prob. 94ECh. 12 - Prob. 95ECh. 12 - A certain oxygen atom has the electron...Ch. 12 - Prob. 97ECh. 12 - Prob. 98ECh. 12 - Prob. 99ECh. 12 - Explain why the first ionization energy tends to...Ch. 12 - Prob. 101ECh. 12 - The radius trend and the ionization energy trend...Ch. 12 - Prob. 103ECh. 12 - Prob. 104ECh. 12 - In each of the following sets, which atom or ion...Ch. 12 - Prob. 106ECh. 12 - Prob. 107ECh. 12 - Prob. 108ECh. 12 - Prob. 109ECh. 12 - Prob. 110ECh. 12 - Prob. 111ECh. 12 - Consider the following ionization energies for...Ch. 12 - Prob. 113ECh. 12 - Prob. 114ECh. 12 - Prob. 115ECh. 12 - Prob. 116ECh. 12 - Prob. 117ECh. 12 - Prob. 118ECh. 12 - Prob. 119ECh. 12 - Prob. 120ECh. 12 - Prob. 121ECh. 12 - Prob. 122ECh. 12 - Prob. 123ECh. 12 - Prob. 124ECh. 12 - Prob. 125ECh. 12 - Prob. 126ECh. 12 - Prob. 127ECh. 12 - Prob. 128AECh. 12 - Prob. 129AECh. 12 - Prob. 130AECh. 12 - Prob. 131AECh. 12 - Prob. 132AECh. 12 - Prob. 133AECh. 12 - Prob. 134AECh. 12 - Prob. 135AECh. 12 - Prob. 136AECh. 12 - Prob. 137AECh. 12 - Prob. 138AECh. 12 - Prob. 139AECh. 12 - An unknown element is a nonmetal and has a...Ch. 12 - Prob. 141AECh. 12 - Using data from this chapter, calculate the change...Ch. 12 - Answer the following questions, assuming that ms...Ch. 12 - Prob. 144AECh. 12 - Prob. 145AECh. 12 - Prob. 146AECh. 12 - The figure below represents part of the emission...Ch. 12 - Prob. 148AECh. 12 - Prob. 149AECh. 12 - Prob. 150AECh. 12 - Prob. 151AECh. 12 - Prob. 152AECh. 12 - Prob. 153AECh. 12 - Identify the following three elements. a. The...Ch. 12 - Prob. 155AECh. 12 - Prob. 156AECh. 12 - Prob. 157AECh. 12 - Prob. 158CPCh. 12 - The ground state ionization energy for the one...Ch. 12 - When the excited electron in a hydrogen atom falls...Ch. 12 - Prob. 161CPCh. 12 - The following numbers are the ratios of second...Ch. 12 - Prob. 163CPCh. 12 - Prob. 164CPCh. 12 - Prob. 165CPCh. 12 - Prob. 166CPCh. 12 - The ionization energy for a 1s electron in a...Ch. 12 - Without looking at data in the text, sketch a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Investigating Energy Levels Consider the hypothetical atom X that has one electron like the H atom but has different energy levels. The energies of an electron in an X atom are described by the equation E=RHn3 where RH is the same as for hydrogen (2.179 1018 J). Answer the following questions, without calculating energy values. a How would the ground-state energy levels of X and H compare? b Would the energy of an electron in the n = 2 level of H be higher or lower than that of an electron in the n = 2 level of X? Explain your answer. c How do the spacings of the energy levels of X and H compare? d Which would involve the emission of a higher frequency of light, the transition of an electron in an H atom from the n = 5 to the n = 3 level or a similar transition in an X atom? e Which atom, X or H, would require more energy to completely remove its electron? f A photon corresponding to a particular frequency of blue light produces a transition from the n = 2 to the n = 5 level of a hydrogen atom. Could this photon produce the same transition (n = 12 to n = 5) in an atom of X? Explain.arrow_forward6.49 Which of these electron configurations are for atoms in the ground state? In excited states? Which are impossible? (a) 1s22s1, (b) 1s22s22p3, (c) [Ne] 3s23p34s1, (d) [Ne] 3s23p64s23d2, (e) [Ne] 3s23p64f 4, (f) 1s22s22p43s2arrow_forward6.101 Laser welding is a technique in which a tightly focused laser beam is used to deposit enough energy to weld metal parts together. Because the entire process can be automated, it is commonly used in many large-scale industries, including the manufacture of automobiles. In order to achieve the desired weld quality, the steel parts being joined must absorb energy at a rate of about 104 W/mm2. (Recall that 1 W = 1 J/s.) A particular laser welding system employs a Nd:YAG laser operating at a wavelength of 1.06m ; at this wavelength steel will absorb about 80% of the incident photons. If the laser beam is focused to illuminate a circular spot with a diameter of 0.02 inch, what is the minimum power (in watts) that the laser must emit to reach the 104 W/mm2 threshold? How many photons per second does this correspond to? (For simplicity, assume that the energy from the laser does not penetrate into the metal to any significant depth.)arrow_forward
- Explain the main features of Bohrs theory. Do these features solve the difficulty alluded to in Question 7.8?arrow_forwardConsider burning ethane gas, C2H6 in oxygen (combustion) forming CO2 and water. (a) How much energy (in J) is produced in the combustion of one molecule of ethane? (b) What is the energy of a photon of ultraviolet light with a wavelength of 12.6 nm? (c) Compare your answers for (a) and (b).arrow_forwardAssign a correct set of four quantum numbers for (a) Each electron in a nitrogen atom. (b) The valence electron in a sodium atom. (c) A 3d electron in a nickel atom.arrow_forward
- The following shapes each represent an orbital of an atom in a hypothetical universe. The small circle is the location of the nucleus in each orbital. a If you placed an electron in each orbital, which one would be higher in energy? b When an electron makes a transition from the orbital represented on the right to the orbital on the left, would you expect energy to be absorbed or released? c Draw a sketch of an orbital of the same type that would be higher in energy than either of the two pictured orbitals.arrow_forward6.71 Several excited states of the neon atom are important in the operation of a helium-neon laser. In these excited states, one electron of the neon atom is promoted from the 2p level to a higher energy orbital. An excited neon atom with a 1s22s22p55s1 electron configuration can emit a photon with a wavelength of 3391 nm as it makes a transition to a lower energy state with a 1s22s22p54p1 electron configuration. Other transitions are also possible. If an excited neon atom with a 1s22s22p53p1 electron configuration makes a transition to a lower energy state with a 1s22s22p53p1 electron configuration, it emits a photon with a wavelength of 632.8 nm. Find the wavelength of the photon that would be emitted in a transition from the 1s22s22p54p1 electron configuration to the 1s22s22p53p1 electron configuration. (It should help if you start by drawing an energy-level diagram.)arrow_forwardLight Energy, and the Hydrogen Atom a Which has the greater wavelength, blue light or red light? b How do the frequencies of blue light and red light compare? c How does the energy of blue light compare with that of red light? d Does blue light have a greater speed than red light? e How does the energy of three photons from a blue light source compare with the energy of one photon of blue light from the same source? How does the energy of two photons corresponding to a wavelength of 451 nm (blue light) compare with the energy of three photons corresponding to a wavelength of 704 nm (red light)? f A hydrogen atom with an electron in its ground state interacts with a photon of light with a wavelength of 1.22 106 m. Could the electron make a transition from the ground state to a higher energy level? If it does make a transition, indicate which one. If no transition can occur, explain. g If you have one mole of hydrogen atoms with their electrons in the n = 1 level, what is the minimum number of photons you would need to interact with these atoms in order to have all of their electrons promoted to the n = 3 level? What wavelength of light would you need to perform this experiment?arrow_forward
- Consider the eight most abundant elements in the human body, as outlined in Exercise 156. Excluding hydrogen, which of these elements would have the smallest size? largest size? smallest first ionization energy? largest first ionization energy?arrow_forwardWhat is the difference between an atom’s ground state and an excited state?arrow_forwardAs the weapons officer aboard the Srarship Chemistry, it is your duty to configure a photon torpedo to remove an electron from the outer hull of an enemy vessel. You know that the work function (the binding energy of the electron) of the hull of the enemy ship is 7.52 1019 J. a. What wavelength does your photon torpedo need to be to eject an electron? b. You find an extra photon torpedo with a wavelength of 259 nm and fire it at the enemy vessel. Does this photon torpedo do any damage to the ship (does it eject an electron)? c. If the hull of the enemy vessel is made of the element with an electron configura tion of [Ar]4s13d10, what metal is this?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Quantum Mechanics - Part 1: Crash Course Physics #43; Author: CrashCourse;https://www.youtube.com/watch?v=7kb1VT0J3DE;License: Standard YouTube License, CC-BY