(a)
Interpretation:One with more exothermic
Concept introduction: In order to remove the electron situated in outermost shell certain minimum energy must be imparted to convert an atom to gaseous species. The energy thus imparted represents ionization energy.
The magnitude of ionization energy is determined by how effectively valence electron is held by the nucleus. If the outermost shell has, for instance, one or two electrons that require very minimum ionization energy as they can attain the noble gas configuration upon loss of those electrons.
Reverse of ionization process may result in a gain of one or more electron as exhibited by groups 16 and 17 to attain noble core configuration. These groups have 6 and seven valence electrons and hence favorably accept 2 and 1 electron respectively. This behavior is termed as electron affinity.
(b)
Interpretation: One with more ionization energyshould be chosen between pairs
Concept introduction: In order to remove the electron situated in outermost shell certain minimum energy must be imparted to convert an atom to gaseous species. The energy thus imparted represents ionization energy.
The magnitude of ionization energy is determined by how effectively valence electron is held by the nucleus. If the outermost shell has, for instance, one or two electrons that require very minimum ionization energy as they can attain the noble gas configuration upon loss of those electrons.
Reverse of ionization process may result in a gain of one or more electron as exhibited by groups 16 and 17 to attain noble core configuration. These groups have 6 and seven valence electrons and hence favorably accept 2 and 1 electron respectively. This behavior is termed as electron affinity.
(c)
Interpretation: One with larger radius should be chosen between pairs
Concept introduction: In order to remove the electron situated in outermost shell certain minimum energy must be imparted to convert an atom to gaseous species. The energy thus imparted represents ionization energy.
The magnitude of ionization energy is determined by how effectively valence electron is held by the nucleus. If the outermost shell has, for instance, one or two electrons that require very minimum ionization energy as they can attain the noble gas configuration upon loss of those electrons.
Reverse of ionization process may result in a gain of one or more electron as exhibited by groups 16 and 17 to attain noble core configuration. These groups have 6 and seven valence electrons and hence favorably accept 2 and 1 electron respectively. This behavior is termed as electron affinity.

Trending nowThis is a popular solution!

Chapter 12 Solutions
Chemical Principles
- Consider the reaction of the cyclopentanone derivative shown below. i) NaOCH2CH3 CH3CH2OH, 25°C ii) CH3!arrow_forwardWhat constitutes a 'reference material', and why does its utilization play a critical role in the chemical analysis of food products? Provide examples.arrow_forwardExplain what calibration is and why it is essential in relation to food analysis. Provide examples.arrow_forward
- The cobalt mu-hydroxide complex cobaltate(III) of potassium is a dinuclear complex. Correct?arrow_forwardThe cobalt mi-hydroxide complex cobaltate(III) of potassium is a dinuclear complex. Correct?arrow_forward3. Arrange the different acids in Exercise B # 2 from the strongest (1) to the weakest acid (10). 1. 2. (strongest) 3. 4. 5. 6. 7. 8. 9. 10 10. (weakest)arrow_forward
- Name Section Score Date EXERCISE B pH, pOH, pка, AND PKD CALCULATIONS 1. Complete the following table. Solution [H+] [OH-] PH РОН Nature of Solution A 2 x 10-8 M B 1 x 10-7 M C D 12.3 6.8 2. The following table contains the names, formulas, ka or pka for some common acids. Fill in the blanks in the table. (17 Points) Acid Name Formula Dissociation reaction Ka pka Phosphoric acid H₂PO₁ H3PO4 H++ H₂PO 7.08 x 10-3 Dihydrogen H₂PO H₂PO H+ HPO 6.31 x 10-6 phosphate Hydrogen HPO₁ 12.4 phosphate Carbonic acid H2CO3 Hydrogen HCO 6.35 10.3 carbonate or bicarbonate Acetic acid CH,COOH 4.76 Lactic acid CH₂CHOH- COOH 1.38 x 10 Ammonium NH 5.63 x 10-10 Phenol CH₂OH 1 x 10-10 Protonated form CH3NH3* 3.16 x 10-11 of methylaminearrow_forwardIndicate whether it is true that Co(III) complexes are very stable.arrow_forwardMnO2 acts as an oxidant in the chlorine synthesis reaction.arrow_forward
- In Potassium mu-dihydroxydicobaltate (III) tetraoxalate K4[Co2(C2O4)4(OH)2], indicate whether the OH ligand type is bidentate.arrow_forwardImagine an electrochemical cell based on these two half reactions with electrolyte concentrations as given below: Oxidation: Pb(s) → Pb2+(aq, 0.10 M) + 2 e– Reduction: MnO4–(aq, 1.50 M) + 4 H+(aq, 2.0 M) + 3 e– → MnO2(s) + 2 H2O(l) Calculate Ecell (assuming temperature is standard 25 °C).arrow_forward: ☐ + Draw the Fischer projection of the most common naturally-occurring form of aspartate, with the acid group at the top and the side chain at the bottom. Important: be sure your structure shows the molecule as it would exist at physiological pH. Click and drag to start drawing a structure. ✓arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning




