(a)
Interpretation:
Concept introduction:To remove the electron situated in outermost shell certain minimum energy must be imparted so as to convert an atom to gaseous species. The energy thus imparted represents ionization energy.
The magnitude of ionization energy is determined by how effectively valence electron is held by the nucleus. If the outermost shell has, for instance, one or two electronsthat require very minimum ionization energy because they can attain the noble gas configuration upon loss of those electrons.
(a)

Explanation of Solution
With 2 electrons with
(b)
Interpretation:Electrons in
Concept introduction:To remove the electron situated in outermost shell certain minimum energy must be imparted so as to convert an atom to gaseous species. The energy thus imparted represents ionization energy.
The magnitude of ionization energy is determined by how effectively valence electron is held by the nucleus. If the outermost shell has, for instance, one or two electronsthat require very minimum ionization energy because they can attain the noble gas configuration upon loss of those electrons.
(b)

Explanation of Solution
With 2 electrons with
(c)
Interpretation:Electrons in
Concept introduction:To remove the electron situated in outermost shell certain minimum energy must be imparted so as to convert an atom to gaseous species. The energy thus imparted represents ionization energy.
The magnitude of ionization energy is determined by how effectively valence electron is held by the nucleus. If the outermost shell has, for instance, one or two electronsthat require very minimum ionization energy because they can attain the noble gas configuration upon loss of those electrons.
(c)

Explanation of Solution
With 2 electrons with
(d)
Interpretation:Electrons in
Concept introduction:To remove the electron situated in outermost shell certain minimum energy must be imparted so as to convert an atom to gaseous species. The energy thus imparted represents ionization energy.
The magnitude of ionization energy is determined by how effectively valence electron is held by the nucleus. If the outermost shell has, for instance, one or two electronsthat require very minimum ionization energy because they can attain the noble gas configuration upon loss of those electrons.
(d)

Explanation of Solution
With 2 electrons with
(e)
Interpretation:Number of neutrons in this element should be identified.
Concept introduction:To remove the electron situated in outermost shell certain minimum energy must be imparted so as to convert an atom to gaseous species. The energy thus imparted represents ionization energy.
The magnitude of ionization energy is determined by how effectively valence electron is held by the nucleus. If the outermost shell has, for instance, one or two electronsthat require very minimum ionization energy because they can attain the noble gas configuration upon loss of those electrons.
(e)

Explanation of Solution
With 2 electrons with
The formula to compute neutrons from mass number is as follows:
Atomic number is 24.
Mass number is 52.
Substitute the value in above formula.
So there are 28 neutrons in chromium.
(f)
Interpretation:Mass of
Concept introduction:To remove the electron situated in outermost shell certain minimum energy must be imparted so as to convert an atom to gaseous species. The energy thus imparted represents ionization energy.
The magnitude of ionization energy is determined by how effectively valence electron is held by the nucleus. If the outermost shell has, for instance, one or two electronsthat require very minimum ionization energy because they can attain the noble gas configuration upon loss of those electrons.
(f)

Explanation of Solution
With 2 electrons with
Since molar mass of chromium ion is
Thus, mass of
(g)
Interpretation:Ground-state electron configuration of neutral chromium should be written.
Concept introduction:Aufbau rule states that electrons must be filled in lowest energy levels first. For instance, electrons first occupy shells that are lower in energies illustrated as follows:
Pauli’s exclusion principle states thatno two or more than two electrons of a poly electron atom can have same values of 4 quantum numbers that are
Hund’s rule of maximum multiplicity states that electrons cannot be allowed to pair until each orbital gets singly filled with one electron. These 3 principles form basis for determination of electronic configuration.However, certain elements that are able to achieve nearest half-filled or fully filed configuration show exceptional configurations.
(g)

Explanation of Solution
With 2 electrons with
With atomic number as 24, expected configuration for
Want to see more full solutions like this?
Chapter 12 Solutions
Chemical Principles
- Can you explain how I get these here and show the steps plz?arrow_forwardGive the IUPAC name for this compound Hydrocarbon Condensed Formulas Hint C2H5 CH2CH3 expand that in all the formula Part A: (CH3)2CHCH(C2H5)CH2CH2CH3 Give the IUPAC name for this compound. Part B: CH2=C(C2H5)CH2CH2CH3 Give the IUPAC name for this compound. Part C: (CH3)2C=CHC(C2H5)=CH2 Give the IUPAC name for this compound. Part D: CH3C=CCH(C2H5)2 Give the IUPAC name for this compound. Part E: (CH3)3CC=CCH2CH=C(CH3)2arrow_forwardSelect/ Match the correct letter from the image below for the IUPAC names given below: A B C D 3 E F G H K L Part 1. 4-methylheptane For example.mmmm Answer Letter H _for part 1 Part 2. 2,4-dimethylhexane Part 3. 2,3-dimethylpentane Part 4. 2,2-dimethylhexane Part 5. 2-ethyl-1,1,3,3-tetramethylcyclopentane Part 6. 3-ethyl-2-methylpentanearrow_forward
- Can u show the process as to how to get these?arrow_forwardSketch the expected 'H NMR spectra for the following compound. Label all of the H's in the structure and the corresponding signal for the spectra you sketch. Make sure you include the integration value and the splitting pattern for each signal Indicate how many signals you would expect in the 13C NMRarrow_forwardUse IUPAC naming rules to name the following hydrocarbon compounds: CH2-CH3 | a) CH-CH-CH2-CH-CH-CH3 b) | CH2 CH3 | CH3 CH3 \ / C=C H 1 H CH2-CH3 c) d) CH=C-CH3 e) CH3-CH2-CH2-CH=CH-CH3 f) CH2=CH-CH2-CH=CH-CH3 g) CH3-CH2-C = C-CH2-CH3 h)arrow_forward
- Q5 Name the following : a. b. C. d. e.arrow_forward25. Predict the major product of the following reaction. 1 equivalent of each of the starting materials was used. H₂C CH3 CH3 H3C H3C H3C. CH2 + H3C. heat CH3 CH H.C. CH3 H.C H.C CH3 CH CH3 CH3 A B C Earrow_forwardFind chemical structures based on the below information. a) Chemical formula C6H8O Compound is aromatic plus has two 1H NMR peaks that integrated for 3 each that are singlets (it could have more peaks in the 1H NMR b) Chemical Formula: C6H100 Compounds is conjugated 'H NMR has a signal that integrates for 6 and is a doublet IR spectra has a signal at 1730 cm-1arrow_forward
- Jaslev Propose a synthesis of the following starting from benzene and any other reagents and chemicals. No mechanisms are required. Indicate the condition for each step plus the major product for each step. More than two steps are required. Step 1 Step 2 مہد Brarrow_forwardPart C: The line formula for another branched alkane is shown below. i. In the IUPAC system what is the root or base name of this compound? ii. How many alkyl substituents are attached to the longest chain? iii. Give the IUPAC name for this compound.arrow_forwardPart D: Draw the Structural Formula for 4-ethyl-2-methylhexane Part E. Draw the Structural Formula for 1-chloro-3,3-diethylpentane (Chloro = Cl)arrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781285199023Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning





