An electron is excited from the ground state to the
a. It takes more energy to ionize (remove) the electronfrom
b. The electron is farther from the nucleus on averagein the
c. The
d. The wavelength of light emitted when the electronreturns to the ground state from
e. The first excited state corresponds to
Want to see the full answer?
Check out a sample textbook solutionChapter 12 Solutions
Chemical Principles
- 6.29 A mercury atom emits light at many wavelengths, two of which are at 435.8 and 546.1 nm. Both of these transitions are to the same final state. (a) What is the energy difference between the two states for each transition? (b) lf a transition between the two higher energy states could be observed, what would be the frequency of the light?arrow_forward(a) Give the complete electron configuration (1s22s22p) of aluminum in the ground state. (b) The wavelength of the radiation emitted when the outermost electron of aluminum falls from the 4s state to the ground state is about 395 nm. Calculate the energy separation (in joules) between these two states in the Al atom. (c) When the outermost electron in aluminum falls from the 3d state to the ground state, the radiation emitted has a wavelength of about 310 nm. Draw an energylevel diagram of the states and transitions discussed here and in (b). Calculate the separation (in joules) between the 3d and 4s states in aluminum. Indicate clearly which has higher energy.arrow_forwardWhat type of electron orbital (i.e., s, p, d, or f) is designated by an electron with quantum numbers (a) n=1,l=0,m l =0(b) n=3,l=2,m l =1? (c) n=4,l=3,m l =3arrow_forward
- Answer the following questions: (a) Without using quantum numbers, describe the differences between the shells, subshells, and orbitals of an atom. (b) How do the quantum numbers of the shells, subshells, and orbitals of an atom differ?arrow_forwardHeated lithium atoms emit photons of light with an energy of 2.9611019 J. Calculate the frequency and wavelength of one of these photons. What is the total energy in 1 mole of these photons? What is the color of the emitted light?arrow_forwardWhat are the allowed values for each of the four quantum numbers: n, l, ml, and ms?arrow_forward
- Which of the following statements is (are) true? I. The product of wavelength and frequency of light is a constant. II. As the energy of electromagnetic radiation increases, its frequency decreases. III. As the wavelength of light increases, its frequency increases. a I only b II only c III only d I and III only e II and III onlyarrow_forwardThe figure below represents part of the emission spectrum for a one-electron ion in the gas phase. All the lines result from electronic transitions from excited states to the n 3 state. (See Exercise 174.) a. What electronic transitions correspond to lines A and B? b. If the wavelength of line B is 142.5 nm, calculate the wavelength of line A.arrow_forward• list the number of orbitals of each type (1s, 3p, etc) in an atom.arrow_forward
- It requires 799 kJ of energy to break one mole of carbon-oxygen double bonds in carbon dioxide. What wavelength of light does this correspond to per bond? Is there any transition in the hydrogen atom that has at least this quantity of energy to one photon?arrow_forwardThe figure below represents part of the emission spectrum for a one-electron ion in lhe gas phase. All the lines result from electronic transitions from excited states to the n = 3 state. (See Exercise 160.) a. What electronic transitions correspond to lines A and B? b. If the wavelength of line B is 142.5 nm, calculate the wavelength of line A.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning