It requires 799 kJ of energy to break one mole of carbon-oxygen double bonds in carbon dioxide. What
Interpretation:
The energy required to rupture one mole of
Concept introduction:
Bohr developed a rule for quantization of energy that could be applicable to the electron of an atom in motion. By using this he derived a formula for energy levels of electron in H-atom.
Relation between frequency and wavelength is,
C is the speed of light.
h is Planck’s constant (
E is energy of light particle.
The distance between any two similar points of a wave is called wavelength
Figure 1
Frequency is defined as number of wavelengths of a wave that can pass through a point in one second.
Answer to Problem 7.108QP
The wavelength of light used to break per bond is
Explanation of Solution
To calculate: The wavelength of light used to break per bond.
The energy of each photon is calculated as follows,
The wave length of light used to break per bond is
The obtained wavelength is in range of near UV region of electromagnetic spectrum which corresponds to lyman series of H-atom. The minimum energy required in this region for transition corresponds to
The obtained energy is more than required energy to break the
By using the formula for energy levels of electron in H-atom, the wavelength of light used to break per bond was calculated.
Want to see more full solutions like this?
Chapter 7 Solutions
General Chemistry - Standalone book (MindTap Course List)
- Ozone in the stratosphere absorbs ultraviolet light of wavelengths shorter than 320 nm, thus filtering out the most energetic radiation from sunlight. During this absorption, an ozone molecule absorbs a photon, which breaks an oxygen-oxygen bond, yielding an oxygen molecule and an oxygen atom: O3(g)+hvO2(g)+O(g) (Here, hv denotes a photon.) Suppose a flask of ozone is irradiated with a pulse of UV light of wavelength 275 nm. Assuming that each photon of this pulse that is absorbed breaks up one ozone molecule, calculate the energy absorbed per mole of O2 produced, giving the answer in kJ/mol.arrow_forwardLight Energy, and the Hydrogen Atom a Which has the greater wavelength, blue light or red light? b How do the frequencies of blue light and red light compare? c How does the energy of blue light compare with that of red light? d Does blue light have a greater speed than red light? e How does the energy of three photons from a blue light source compare with the energy of one photon of blue light from the same source? How does the energy of two photons corresponding to a wavelength of 451 nm (blue light) compare with the energy of three photons corresponding to a wavelength of 704 nm (red light)? f A hydrogen atom with an electron in its ground state interacts with a photon of light with a wavelength of 1.22 106 m. Could the electron make a transition from the ground state to a higher energy level? If it does make a transition, indicate which one. If no transition can occur, explain. g If you have one mole of hydrogen atoms with their electrons in the n = 1 level, what is the minimum number of photons you would need to interact with these atoms in order to have all of their electrons promoted to the n = 3 level? What wavelength of light would you need to perform this experiment?arrow_forwardSunburn is caused by ultraviolet UV radiation. Why does red light not cause sunburn?arrow_forward
- Consider the eight most abundant elements in the human body, as outlined in Exercise 156. Excluding hydrogen, which of these elements would have the smallest size? largest size? smallest first ionization energy? largest first ionization energy?arrow_forwardWhen a tube containing hydrogen atoms is energized by passing several thousand volts of electricity into the tube, the hydrogen emits light than when passed through a prism, resolves into the "bright line" spectrum shown in Fig. 11.10. Why do hydrogen atoms emit bright lines of specific wavelengths rather than a continuous spectrum?arrow_forwardDo atoms in excited states emit radiation randomly, at any wavelength? Why? What does it mean to say that the hydrogen atom has only certain discrete energy levels available? How do we know this? Why was the quantization of energy levels surprising to scientists when it was first discovered?arrow_forward
- One bit of evidence that the quantum mechanical model is correct lies in the magnetic properties of matter. Atoms with unpaired electrons are attracted by magnetic fields and thus are said to exhibit pararamagnetism. The degree to which this effect is observed is directly related to the number of unpaired electrons present in the atom. Consider the ground-state electron configurations for Li, N, Ni, Te, Ba, and Hg. Which of these atoms would be expected to be paramagnetic, and how many unpaired electrons are present in each paramagnetic atom?arrow_forwardThe following shapes each represent an orbital of an atom in a hypothetical universe. The small circle is the location of the nucleus in each orbital. a If you placed an electron in each orbital, which one would be higher in energy? b When an electron makes a transition from the orbital represented on the right to the orbital on the left, would you expect energy to be absorbed or released? c Draw a sketch of an orbital of the same type that would be higher in energy than either of the two pictured orbitals.arrow_forward6.103 Atomic absorption spectroscopy is based on the atomic spectra of the elements being studied. It can be used to determine the impurities in a metal sample. If an element is present, light at the appropriate wavelength is absorbed. You are working with a metal stamping company and the rolled steel you use to form panels for automobile doors is failing at an alarming rate. There is some chance that the problem is unacceptably high levels of manganese in the steel. Given that the atomic spectrum of manganese has three lines near 403 nm, how could you use a spectrometer to determine the amount of manganese in the steel?arrow_forward
- Cesium was discovered in natural mineral waters in 1860 by R. W. Bunsen and G. R. Kirchhoff, using the spectroscope they invented in 1859. The name came from the Latin caesius ("sky blue") because of the prominent blue line observed for this element at 455.5 nm. Calculate the frequency and energy of a photon of this light.arrow_forwardPhotogray lenses incorporate small amounts of silver chloride in the glass of the lens. When light hits the AgCl particles, me following reaction occurs: AgClhvAg+Cl The silver metal that is formed causes the lenses to darken. The energy change for this reaction is 3.10 102 kJ/mol. Assuming all this energy must be supplied by light, what is the maximum wavelength of light that can cause this reaction?arrow_forwardInvestigating Energy Levels Consider the hypothetical atom X that has one electron like the H atom but has different energy levels. The energies of an electron in an X atom are described by the equation E=RHn3 where RH is the same as for hydrogen (2.179 1018 J). Answer the following questions, without calculating energy values. a How would the ground-state energy levels of X and H compare? b Would the energy of an electron in the n = 2 level of H be higher or lower than that of an electron in the n = 2 level of X? Explain your answer. c How do the spacings of the energy levels of X and H compare? d Which would involve the emission of a higher frequency of light, the transition of an electron in an H atom from the n = 5 to the n = 3 level or a similar transition in an X atom? e Which atom, X or H, would require more energy to completely remove its electron? f A photon corresponding to a particular frequency of blue light produces a transition from the n = 2 to the n = 5 level of a hydrogen atom. Could this photon produce the same transition (n = 12 to n = 5) in an atom of X? Explain.arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning