The probable subshells for the given principal quantum number n = 8 have to be identified. Concept introduction: Principal Quantum Number (n): In an atom, the electron energy mainly depends on principal quantum number. The energy of an electron becomes lower when the value of n is smaller. The orbital size also depends on n. The size of orbital increases with increase in value of principal quantum number (n) Angular Momentum Quantum Number (l): It helps to differentiate different shapes of orbitals for given n. For a given n, there are n different shapes of orbitals are present and are denoted as l. Angular momentum quantum number is also known as Azimuthal quantum number. The possible values of angular momentum quantum number between 0 and (n-1) . If the n is 3 , then l value is 0 , 1 , 2 Subshell Number of orbital in subshell Number of Electrons that can fill subshell s 1 2 p 3 6 d 5 10 f 7 14 g 9 18
The probable subshells for the given principal quantum number n = 8 have to be identified. Concept introduction: Principal Quantum Number (n): In an atom, the electron energy mainly depends on principal quantum number. The energy of an electron becomes lower when the value of n is smaller. The orbital size also depends on n. The size of orbital increases with increase in value of principal quantum number (n) Angular Momentum Quantum Number (l): It helps to differentiate different shapes of orbitals for given n. For a given n, there are n different shapes of orbitals are present and are denoted as l. Angular momentum quantum number is also known as Azimuthal quantum number. The possible values of angular momentum quantum number between 0 and (n-1) . If the n is 3 , then l value is 0 , 1 , 2 Subshell Number of orbital in subshell Number of Electrons that can fill subshell s 1 2 p 3 6 d 5 10 f 7 14 g 9 18
Solution Summary: The author explains the probable subshells for the given principal quantum number.
Author: Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Definition Definition Product of the moment of inertia and angular velocity of the rotating body: (L) = Iω Angular momentum is a vector quantity, and it has both magnitude and direction. The magnitude of angular momentum is represented by the length of the vector, and the direction is the same as the direction of angular velocity.
Chapter 7, Problem 7.90QP
Interpretation Introduction
Interpretation:
The probable subshells for the given principal quantum number n=8 have to be identified.
Concept introduction:
Principal Quantum Number (n): In an atom, the electron energy mainly depends on principal quantum number. The energy of an electron becomes lower when the value of n is smaller. The orbital size also depends on n. The size of orbital increases with increase in value of principal quantum number (n)
Angular Momentum Quantum Number (l): It helps to differentiate different shapes of orbitals for given n. For a given n, there are n different shapes of orbitals are present and are denoted as l. Angular momentum quantum number is also known as Azimuthal quantum number. The possible values of angular momentum quantum number between 0and(n-1). If the n is 3, then l value is 0,1,2
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Quantum Numbers, Atomic Orbitals, and Electron Configurations; Author: Professor Dave Explains;https://www.youtube.com/watch?v=Aoi4j8es4gQ;License: Standard YouTube License, CC-BY