The subshells A and B given in table with some values filled and the remaining has to be identified. Concept introduction: Principal Quantum Number (n): In an atom, the electron energy mainly depends on principal quantum number. The energy of an electron becomes lower when the value of n is smaller. The orbital size also depends on n. The size of orbital increases with increase in value of principal quantum number (n) Angular Momentum Quantum Number (l): It helps to differentiate different shapes of orbitals for given n. For a given n, there are n different shapes of orbitals are present and are denoted as l. Angular momentum quantum number is also known as Azimuthal quantum number. Magnetic Quantum Number ( m l ): It helps to distinguish orbitals having various orientation in space. Any integer between -l and +l is the probable values of magnetic quantum number. For s subshell the l = 0 , then m l is zero. For p subshell the l = 1 , then m l = − 1 , 0 , + 1 . Spin Quantum Number ( m s ): It refers to direction of spin of an electron in an orbital. The possible values are + 1 2 or - 1 2 .
The subshells A and B given in table with some values filled and the remaining has to be identified. Concept introduction: Principal Quantum Number (n): In an atom, the electron energy mainly depends on principal quantum number. The energy of an electron becomes lower when the value of n is smaller. The orbital size also depends on n. The size of orbital increases with increase in value of principal quantum number (n) Angular Momentum Quantum Number (l): It helps to differentiate different shapes of orbitals for given n. For a given n, there are n different shapes of orbitals are present and are denoted as l. Angular momentum quantum number is also known as Azimuthal quantum number. Magnetic Quantum Number ( m l ): It helps to distinguish orbitals having various orientation in space. Any integer between -l and +l is the probable values of magnetic quantum number. For s subshell the l = 0 , then m l is zero. For p subshell the l = 1 , then m l = − 1 , 0 , + 1 . Spin Quantum Number ( m s ): It refers to direction of spin of an electron in an orbital. The possible values are + 1 2 or - 1 2 .
Solution Summary: The author explains that the subshells A and B are given in table with some values filled and the remaining has to be identified.
Author: Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Definition Definition Product of the moment of inertia and angular velocity of the rotating body: (L) = Iω Angular momentum is a vector quantity, and it has both magnitude and direction. The magnitude of angular momentum is represented by the length of the vector, and the direction is the same as the direction of angular velocity.
Chapter 7, Problem 7.123QP
Interpretation Introduction
Interpretation:
The subshells A and B given in table with some values filled and the remaining has to be identified.
Concept introduction:
Principal Quantum Number (n): In an atom, the electron energy mainly depends on principal quantum number. The energy of an electron becomes lower when the value of n is smaller. The orbital size also depends on n. The size of orbital increases with increase in value of principal quantum number (n)
Angular Momentum Quantum Number (l): It helps to differentiate different shapes of orbitals for given n. For a given n, there are n different shapes of orbitals are present and are denoted as l. Angular momentum quantum number is also known as Azimuthal quantum number.
Magnetic Quantum Number (ml): It helps to distinguish orbitals having various orientation in space. Any integer between -l and +l is the probable values of magnetic quantum number. For s subshell the l=0, then ml is zero. For p subshell the l=1, then ml=−1,0,+1.
Spin Quantum Number (ms): It refers to direction of spin of an electron in an orbital. The possible values are +12or-12.
Using reaction free energy to predict equilibrium composition
Consider the following equilibrium:
2NOCI (g) 2NO (g) + Cl2 (g) AGº =41. kJ
Now suppose a reaction vessel is filled with 4.50 atm of nitrosyl chloride (NOCI) and 6.38 atm of chlorine (C12) at 212. °C. Answer the following questions
about this system:
?
rise
Under these conditions, will the pressure of NOCI tend to rise or fall?
x10
fall
Is it possible to reverse this tendency by adding NO?
In other words, if you said the pressure of NOCI will tend to rise, can that
be changed to a tendency to fall by adding NO? Similarly, if you said the
pressure of NOCI will tend to fall, can that be changed to a tendency to
rise by adding NO?
yes
no
If you said the tendency can be reversed in the second question, calculate
the minimum pressure of NO needed to reverse it.
Round your answer to 2 significant digits.
0.035 atm
✓
G
00.
18
Ar
Highlight each glycosidic bond in the molecule below. Then answer the questions in the table under the drawing area.
HO-
HO-
-0
OH
OH
HO
NG
HO-
HO-
OH
OH
OH
OH
NG
OH
€
+
Suppose the molecule in the drawing area below were reacted with H₂ over a platinum catalyst. Edit the molecule to show what would happen to it. That is, turn
it into the product of the reaction.
Also, write the name of the product molecule under the drawing area.
Name: ☐
H
C=0
X
H-
OH
HO-
H
HO-
-H
CH₂OH
×
Chapter 7 Solutions
General Chemistry - Standalone book (MindTap Course List)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Quantum Numbers, Atomic Orbitals, and Electron Configurations; Author: Professor Dave Explains;https://www.youtube.com/watch?v=Aoi4j8es4gQ;License: Standard YouTube License, CC-BY