Concept explainers
Interpretation:
The
Concept introduction:
Bohr developed a rule for quantization of energy that could be applicable to the electron of an atom in motion. By using this he derived a formula for energy levels of electron in H-atom.
The energy lost during a transition is calculated using Balmer’s formula
Answer to Problem 7.84QP
The wavelength of emitted light when an electron from hydrogen atom transit from
The emission occurs in far UV region of electromagnetic spectrum
Explanation of Solution
To calculate: The wavelength of emitted light when an electron from hydrogen atom transit from
Energy levels are given as
The wavelength of emitted light is calculated as follows,
The emission occurs in far UV region of electromagnetic spectrum.
By using the formula for energy levels of electron in H-atom, the wavelength of emitted light when an electron from hydrogen atom transit from
Want to see more full solutions like this?
Chapter 7 Solutions
General Chemistry - Standalone book (MindTap Course List)
- A hydrogen-like ion has a nucleus of charge +Ze and a single electron outside this nucleus. The energy levels of these ions are Z2RH/n2 (where Z = atomic number). Calculate the wavelength of the transition from n = 3 to n = 2 for He+, a hydrogen-like ion. In what region of the spectrum does this emission occur?arrow_forwardHelium absorbs light at 587.6 nm. What is the frequency of this light?arrow_forward6.85 The visible lines in the hydrogen atom emission spectrum arise from transitions with a final state with n = 2. In what spectral region should we expect to find transitions that have a final state of n = 1 ? Explain your reasoning using an energy level diagram similar to the one in Problem 6.26.arrow_forward
- Spectroscopists have observed He+ in outer space. This ion is a one-electron species like a neutral hydrogen atom. Calculate the energy of the photon emitted for the transition from the n = 5 to the n = 3 state in this ion using the equation: En = − Z2/n2 (2.179 × 10−18 J). Z is the positive charge of the nucleus and n is the principal quantum number. In what part of the electromagnetic spectrum does this radiation lie?arrow_forward6.17 The laser in most supermarket barcode scanners operates at a wavelength of 632.8 nm. What is the energy of a single photon emitted by such a laser? What is the energy of one mole of these photons?arrow_forwardA hydrogen atom in the ground stale absorbs a photon whose wavelength is 95.0 nm. The resulting excited atom then emits a photon of 1282 nm. What are the regions of the electromagnetic spectrum for the radiations involved in these transitions? What is the principal quantum number of the final state resulting from the emission from the excited atom?arrow_forward
- 6.14 For photon with the following energies, calculate the wavelength and identify the region of the spectrum they are from. (a) 3.51020 J, (b) 8.71026 J, (c) 7.11017 J, (d) 5.51027 Jarrow_forwardA bright violet line occurs at 435.8 nm in the emission spectrum of mercury vapor. What amount of energy, in joules, must be released by an electron in a mercury atom to produce a photon of this light?arrow_forwardCalculate the wavelength of the Balmer line of the hydrogen spectrum in which the initial n quantum number is 5 and the final n quantum number is 2.arrow_forward
- 6.96 When a helium atom absorbs light at 58.44 nm, an electron is promoted from the 1s orbital to a 2p orbital. Given that the ionization energy of (ground state) helium is 2372 kJ/ mol, find the longest wavelength of light that could eject an electron from the excited state helium atom.arrow_forwardThis laser emits green light with a wavelength of 533 nm. (a) What is the energy, in joules, of one photon of light at this wavelength? (b) If a particular laser produces 1.00 watt (W) of power (1 W = 1 J/s), how many photons are produced each second by the laser?arrow_forwardWarm objects emit electromagnetic radiation in the infrared region. Heat lamps employ this principle to generate infrared radiation. Water absorbs infrared radiation with wavelengths near 2.80 m. Suppose this radiation is absorbed by the water and converted to heat. A 1.00-L sample of water absorbs infrared radiation, and its temperature increases from 20.0C to 30.0C. How many photons of this radiation are used to heat the water?arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning