General Chemistry - Standalone book (MindTap Course List)
11th Edition
ISBN: 9781305580343
Author: Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7.3, Problem 7.2CC
An atom has a line spectrum consisting of a red line and a blue line. Assume that each line corresponds to a transition between two adjacent energy levels. Sketch an energy-level diagram with three energy levels that might explain this line spectrum, indicating the transitions on this diagram. Consider the transition from the highest energy level on this diagram to the lowest energy level. How would you describe the color or region of the spectrum corresponding to this transition?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Please answer question 2 Part A
Please answer #1 and #2
Please help answer question 4 and 5
Chapter 7 Solutions
General Chemistry - Standalone book (MindTap Course List)
Ch. 7.1 - The frequency of the strong red line in the...Ch. 7.1 - The element cesium was discovered in 1860 by...Ch. 7.1 - Laser light of a specific frequency falls on a...Ch. 7.2 - The following are representative wavelengths in...Ch. 7.3 - Calculate the wavelength of light emitted from the...Ch. 7.3 - What is the difference in energy levels of the...Ch. 7.3 - An atom has a line spectrum consisting of a red...Ch. 7.4 - Calculate the wavelength (in picometers)...Ch. 7.4 - A proton is approximately 2000 times heavier than...Ch. 7.5 - Explain why each of the following sets of quantum...
Ch. 7 - Give a brief wave description of light. What are...Ch. 7 - What is the mathematical relationship among the...Ch. 7 - Prob. 7.3QPCh. 7 - Planck originated the idea that energies can be...Ch. 7 - In your own words, explain the photoelectric...Ch. 7 - Prob. 7.6QPCh. 7 - Prob. 7.7QPCh. 7 - Prob. 7.8QPCh. 7 - Explain the main features of Bohrs theory. Do...Ch. 7 - Prob. 7.10QPCh. 7 - Prob. 7.11QPCh. 7 - Prob. 7.12QPCh. 7 - Prob. 7.13QPCh. 7 - Prob. 7.14QPCh. 7 - Bohr described the hydrogen atom as an electron...Ch. 7 - Give the possible values of a. the principal...Ch. 7 - What is the notation for the subshell in which n =...Ch. 7 - Prob. 7.18QPCh. 7 - Which of the following statements about a hydrogen...Ch. 7 - Which of the following statements is (are) true?...Ch. 7 - Of the following possible transitions of an...Ch. 7 - What wavelength of electromagnetic radiation...Ch. 7 - Light Energy, and the Hydrogen Atom a Which has...Ch. 7 - Investigating Energy Levels Consider the...Ch. 7 - Consider two beams of the same yellow light....Ch. 7 - Prob. 7.26QPCh. 7 - One photon of green light has less than twice the...Ch. 7 - An atom in its ground state absorbs a photon...Ch. 7 - Three emission lines involving three energy levels...Ch. 7 - An atom emits yellow light when an electron makes...Ch. 7 - Which of the following particles has the longest...Ch. 7 - Imagine a world in which the rule for the l...Ch. 7 - Given the following energy level diagram for an...Ch. 7 - The following shapes each represent an orbital of...Ch. 7 - Radio waves in the AM region have frequencies in...Ch. 7 - Microwaves have frequencies in the range 109 to...Ch. 7 - Light with a wavelength of 478 nm lies in the blue...Ch. 7 - Calculate the frequency associated with light of...Ch. 7 - At its closest approach, Mercury is 77.3 million...Ch. 7 - The space probe Pioneer 11 was launched April 5,...Ch. 7 - The meter was defined in 1963 as the length equal...Ch. 7 - The second is defined as the time it takes for...Ch. 7 - What is the energy of a photon corresponding to...Ch. 7 - What is the energy of a photon corresponding to...Ch. 7 - The green line in the atomic spectrum of thallium...Ch. 7 - Molybdenum compounds give a yellowish-green flame...Ch. 7 - A particular transition of the rubidium atom emits...Ch. 7 - Selenium atoms have a particular transition that...Ch. 7 - An electron in a hydrogen atom in the level n = 5...Ch. 7 - Calculate the frequency of electromagnetic...Ch. 7 - The first line of the Lyman series of the hydrogen...Ch. 7 - What is the wavelength of the electromagnetic...Ch. 7 - Calculate the shortest wavelength of the...Ch. 7 - Calculate the longest wavelength of the...Ch. 7 - What is the difference in energy between the two...Ch. 7 - What is the difference in energy between the two...Ch. 7 - What is the wavelength of a neutron traveling at a...Ch. 7 - What is the wavelength of a proton traveling at a...Ch. 7 - At what speed must an electron travel to have a...Ch. 7 - At what speed must a neutron travel to have a...Ch. 7 - What is the de Broglie wavelength of a 149-g...Ch. 7 - What is the de Broglie wavelength of an oxygen...Ch. 7 - If the n quantum number of an atomic orbital is 4,...Ch. 7 - The n quantum number of an atomic orbital is 5....Ch. 7 - How many subshells are there in the M shell? How...Ch. 7 - How many subshells are there in the N shell? How...Ch. 7 - Give the notation (using letter designations for...Ch. 7 - Give the notation (using letter designations for...Ch. 7 - Explain why each of the following sets of quantum...Ch. 7 - State which of the following sets of quantum...Ch. 7 - The blue line of the strontium atom emission has a...Ch. 7 - The barium atom has an emission with wavelength...Ch. 7 - The energy of a photon is 2.70 1019 J. What is...Ch. 7 - The energy of a photon is 3.05 1019 J. What is...Ch. 7 - The photoelectric work function of a metal is the...Ch. 7 - The photoelectric work function for magnesium is...Ch. 7 - Light of wavelength 345 nm shines on a piece of...Ch. 7 - Light of wavelength 285 nm shines on a piece of...Ch. 7 - Calculate the wavelength of the Balmer line of the...Ch. 7 - Calculate the wavelength of the Balmer line of the...Ch. 7 - One of the lines in the Balmer series of the...Ch. 7 - A line of the Lyman series of the hydrogen atom...Ch. 7 - A hydrogen-like ion has a nucleus of charge +Ze...Ch. 7 - Prob. 7.84QPCh. 7 - An electron microscope employs a beam of electrons...Ch. 7 - Neutrons are used to obtain images of the hydrogen...Ch. 7 - What is the number of different orbitals in each...Ch. 7 - What is the number of different orbitals in each...Ch. 7 - List the possible subshells for the n = 6 shell.Ch. 7 - Prob. 7.90QPCh. 7 - Prob. 7.91QPCh. 7 - Prob. 7.92QPCh. 7 - Prob. 7.93QPCh. 7 - Prob. 7.94QPCh. 7 - What wavelength of electromagnetic radiation...Ch. 7 - AM radio stations broadcast at frequencies between...Ch. 7 - A particular microwave oven delivers 750 watts. (A...Ch. 7 - A ruby laser puts out a pulse of red light at a...Ch. 7 - The retina of the eye contains two types of...Ch. 7 - Ozone in the stratosphere absorbs ultraviolet...Ch. 7 - Prob. 7.101QPCh. 7 - The photoelectric work function of potassium is...Ch. 7 - Prob. 7.103QPCh. 7 - Prob. 7.104QPCh. 7 - Light of wavelength 1.03 107 m is emitted when an...Ch. 7 - A hydrogen atom in the ground stale absorbs a...Ch. 7 - Prob. 7.107QPCh. 7 - It requires 799 kJ of energy to break one mole of...Ch. 7 - The root-mean-square speed of an oxygen molecule,...Ch. 7 - Prob. 7.110QPCh. 7 - In X-ray fluorescence spectroscopy, a material can...Ch. 7 - For each of the following combinations of quantum...Ch. 7 - Prob. 7.113QPCh. 7 - In a hypothetical universe, the quantum numbers...Ch. 7 - The energy required to dissociate the Cl2 molecule...Ch. 7 - The energy required to dissociate the H2 molecule...Ch. 7 - A microwave oven heats by radiating food with...Ch. 7 - Warm objects emit electromagnetic radiation in the...Ch. 7 - Light with a wavelength of 425 nm fell on a...Ch. 7 - Light with a wavelength of 405 nm fell on a...Ch. 7 - Prob. 7.121QPCh. 7 - When an electron is accelerated by a voltage...Ch. 7 - Prob. 7.123QPCh. 7 - The table below is partially completed for...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Consider the transition from the energy levels n=5 to n=3. (a) What is the frequency of light associated with this transition? (b) In what spectral region does the transition occur? (c) Is energy absorbed?arrow_forwardClassify each of the following elements into the s,p,d, or f area of the periodic table on the basis of the distinguishing electron: a. Kr b. tin c. Pu d. element 40arrow_forwardThe following shapes each represent an orbital of an atom in a hypothetical universe. The small circle is the location of the nucleus in each orbital. a If you placed an electron in each orbital, which one would be higher in energy? b When an electron makes a transition from the orbital represented on the right to the orbital on the left, would you expect energy to be absorbed or released? c Draw a sketch of an orbital of the same type that would be higher in energy than either of the two pictured orbitals.arrow_forward
- Consider the transition from the energy levels n=2 to n=5. (a) What is the wavelength associated with this transition? (b) In what spectral region does the transition occur? (c) Is energy absorbed?arrow_forwardThe four most abundant elements by mass in the human body are oxygen, carbon, hydrogen, and nitrogen. These four elements make up about 96% of the human body. The next four most abundant elements are calcium, phosphorus, magnesium, and potassium. Excluding hydrogen, which of these elements would have the smallest size? largest size? smallest first ionization energy? largest first ionization energy?arrow_forwardWhich statement is true of the quantum mechanical model, but not of the Bohr model? a. Electrons orbit the nucleus in simple circular orbits, just like planets orbit the Sun. b. The exact path that an electron follows within an atom cannot be specified. c. The electron is attracted to the nucleus of the atom.arrow_forward
- Give electron configurations according to the Bohr model for each of the following elements. Indicate which of these elements you expect to be the most reactive and the least reactive. a. He b. Al c. Be d. Ne e. Oarrow_forwardAdvances in technology and science often progress hand-in-hand. What advance in technology was necessary to set the stage for the discovery of the electron?arrow_forwardExplain electron from a quantum mechanical perspective, including a discussion of atomic radii, probabilities, and orbitals.arrow_forward
- Write complete electron configurations for atoms whose electron configurations end as follows. a. 4p2 b. 3d10 c. 5s1 d. 4p6arrow_forwardDraw a diagram with energy on the y - axis showing an electron going from a lower level to an upper level. On the same diagram show the electron transition from the higher to lower level. During which process is energy absorbedarrow_forwardThe electron configuration can also be represented by writing the symbol for the occupied subshell and adding a superscript to indicate the number of electrons in that subshell. For example, consider a carbon atom having an atomic number of 6. The total number of electrons in a neutral carbon atom is 6. The electron configuration of the carbon atom represented by the orbital diagram is C-1 1111 2p 1s 2s This electron configuration can be written as 18² 28² 2p² where 18, 2s, and 2p are the occupied subshells, and the superscript "2" is the number f electrons in each of these subshells. Use the rules for determining electron configurations to write the electron configuration for Si. Express your answer in complete form in order of orbital filling. For example, 182 2s² should be entered as 1s^22s^2. ► View Available Hint(s) You have already submitted this answer. Enter a new answer. No credit lost. Try again.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Quantum Mechanics - Part 1: Crash Course Physics #43; Author: CrashCourse;https://www.youtube.com/watch?v=7kb1VT0J3DE;License: Standard YouTube License, CC-BY