Concept explainers
Figure 12-15 shows three situations in which the same horizontal rod is supported by a hinge on a wall at one end and a cord at its other end. Without written calculation, rank the situations according to the magnitudes of (a) the force on the rod from the cord, (b) the vertical force on the rod from the hinge, and (c) the horizontal force on the rod from the hinge, greatest first.
Figure 12-15 Question 1.
To rank:
a) The situations according to the magnitudes of the force on the rod from the cord.
b) The situations according to the magnitudes of the vertical force on the rod from the hinge.
c) The situations according to the magnitudes of the horizontal force on the rod form the hinge.
Answer to Problem 1Q
Solution:
a) Magnitudes of force on the rod from the cord in case (1) and (3) is same and greater than that in case (2).
b) Magnitudes of the vertical force on the rod from the hinge is same for all 3 cases.
c) Magnitudes of the horizontal force on the rod form the hinge is same in cases (1) and (3) and is zero in case (2)
Explanation of Solution
1) Concept:
We can use the concept of balancing of forces and torque at equilibrium to rank the situations according to the magnitude of the forces.
2) Formulae:
At equilibrium,
i.
ii.
3) Given:
i. The figure of rod-cable system.
ii. The angle made by the cord with the vertical direction in case 1 and 3 is 500
4) Calculation:
a) We consider the hinge point as the point of rotation. The torques acting on the rod are due to tension in the string and the weight of the rod. In all the three cases, the rod is in static equilibrium, hence:
The weight of the rod is acting at its centre and is the same in magnitude. Hence the torque equation tells us that torque due to tension, it is same in all the cases.
But the cord is making an angle with the vertical in cases (1) and (3). Hence we understand that the torque due to vertical component of the tension (T cos 50o) is the same. Since it is a component of the total tension, we know that the total tension is greater than the components in cases (1) and (3).Thus, for cases (1) and (3) the tension in the string is same and it will be greater than this in case (2).
b) We consider the hinge point as the point of rotation. In all the three cases, the rod is in static equilibrium. So the torques acting on the rod due to the tension in the string and the weight of the rod are balanced and the forces are also balanced.
Thus the vertical force from the hinge on the rod is same in all the three cases.
c) The forces acting on the rod in the horizontal direction are the force from hinge and the horizontal component of tension in the cord. In cases (1) and (3), the tension in the string is the same. Hence their corresponding horizontal components are also the same.
Thus, the horizontal force on the rod from the hinge is the same in cases (1) and (3). In case (2), there is no horizontal component of tension, hence the horizontal force from the hinge is also zero.
Conclusion:
The rod is in static equilibrium in all three cases. From the balancing conditions for torque and forces, we can determine the magnitudes of the forces acting on the rod.
Want to see more full solutions like this?
Chapter 12 Solutions
Fundamentals of Physics Extended
Additional Science Textbook Solutions
Human Physiology: An Integrated Approach (8th Edition)
Campbell Biology (11th Edition)
Organic Chemistry
Microbiology: An Introduction
Biology: Life on Earth with Physiology (11th Edition)
College Physics: A Strategic Approach (3rd Edition)
- 19:39 · C Chegg 1 69% ✓ The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take F=1700 lb. (Figure 1) Figure 800 lb ||-5- F 600 lb بتا D E C BO 10 ft 5 ft 4 ft-—— 6 ft — 5 ft- Solved Part A The compound beam is fixed at E and... Hình ảnh có thể có bản quyền. Tìm hiểu thêm Problem A-12 % Chia sẻ kip 800 lb Truy cập ) D Lưu of C 600 lb |-sa+ 10ft 5ft 4ft6ft D E 5 ft- Trying Cheaa Những kết quả này có hữu ích không? There are pins at C and D To F-1200 Egue!) Chegg Solved The compound b... Có Không ☑ ||| Chegg 10 וחarrow_forwardNo chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvotearrow_forward
- No chatgpt pls will upvotearrow_forwardair is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward
- 13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forwardNo chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forward
- Calculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forwardNo chatgpt pls will upvotearrow_forwardCan you help me solve the questions pleasearrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning