(a)
Interpretation:
The concentration
Concept introduction:
Effect of pressure on solubility:
Henrys law:
According to Henrys law, the solubility of a gas in a liquid at a given temperature is directly proportional to the partial pressure of the gas over the solution.
(b)
Interpretation:
The concentration
Concept introduction:
Effect of pressure on solubility:
Henrys law:
According to Henrys law, the solubility of a gas in a liquid at a given temperature is directly proportional to the partial pressure of the gas over the solution.
Want to see the full answer?
Check out a sample textbook solutionChapter 11 Solutions
General Chemistry: Atoms First
- What is the mole fraction of H 2 S O 4 in a solution containingthe percentage of sulfuric acid and water shownin Figure 14.25?arrow_forward6-111 As noted in Section 6-8C, the amount of external pressure that must be applied to a more concentrated solution to stop the passage of solvent molecules across a semipermeable membrane is known as the osmotic pressure The osmotic pressure obeys a law similar in form to the ideal gas law (discussed in Section 5-4), where Substituting for pressure and solving for osmotic pressures gives the following equation: RT MRT, where M is the concentration or molarity of the solution. (a) Determine the osmotic pressure at 25°C of a 0.0020 M sucrose (C12H22O11) solution. (b) Seawater contains 3.4 g of salts for every liter of solution. Assuming the solute consists entirely of NaCl (and complete dissociation of the NaCI salt), calculate the osmotic pressure of seawater at 25°C. (c) The average osmotic pressure of blood is 7.7 atm at 25°C. What concentration of glucose (C6H12O6) will be isotonic with blood? (d) Lysozyme is an enzyme that breaks bacterial cell walls. A solution containing 0.150 g of this enzyme in 210. mL of solution has an osmotic pressure of 0.953 torr at 25°C. What is the molar mass of lysozyme? (e) The osmotic pressure of an aqueous solution of a certain protein was measured in order to determine the protein's molar mass. The solution contained 3.50 mg of protein dissolved in sufficient water to form 5.00 mL of solution. The osmotic pressure of the solution at 25°C was found to be 1.54 torr. Calculate the molar mass of the protein.arrow_forwardWill red blood cells crenate, hemolyze, or remain unaffected when placed in each of the solutions in Problem 8-107?arrow_forward
- Insulin is a hormone responsible for the regulation of glucose levels in the blood. An aqueous solution of insulin has an osmotic pressure of 2.5 mm Hg at 25C. It is prepared by dissolving 0.100 g of insulin in enough water to make 125 mL of solution. What is the molar mass of insulin?arrow_forward6-84 (Chemical Connections 6D) What is the chemical formula for the main component of limestone and marble?arrow_forwardThe osmotic pressure of human blood is 7.6 atm at 37 C. What mass of glucose, C6H12O6, is required to make 1.00 L of aqueous solution for intravenous feeding if the solution must have the same osmotic pressure as blood at body temperature, 37 C?arrow_forward
- In the 1986 Lake Nyos disaster (see the chapter introduction), an estimated 90 billion kilograms of CO2 was dissolved in the lake at the time. (a) What volume of gas is this at standard temperature and pressure? (b) Assuming that this dissolved gas was in equilibrium with the normal partial pressure of CO2 in the atmosphere (0.038%, or 0.29 torr), use the Henrys law constant for CO2 in water to estimate the volume of Lake Nyos.arrow_forwardAcetone, CH3COCH3, is a common laboratory solvent. It is usually contaminated with water, however. Why does acetone absorb water so readily? Draw molecular structures showing how water and acetone can interact. What intermolecular force(s) is(are) involved in the interaction?arrow_forwardIn a mountainous location, the boiling point of pure water is found to be 95C. How many grams of sodium chloride must be added to 1 kg of water to bring the boiling point back to 100C? Assume that i = 2.arrow_forward
- 5.) The Henry's Law constant for O3 in water at 25 °C is 1.2x10-2 M/atm. What pressure of O3, in atm, would be required to give a [O3] = 0.0275 M? Your Answer:arrow_forward3. (a) The Lattice enthalpy for the solid ionic compound AgBr is +900. kJ/mole. Write the chemical equation that corresponds to the Lattice Enthalpy for AgBr(s) in the space above. Then explain in your own words why this is a large positive number. (b) The hydration enthalpy for AgBris -821 kJ/mole. Write the chemical equation that corresponds to the Hydration Enthalpy for AgBr(s) in the space above. Then explain in your own words why this is a large negative number. (c) Would you expect this compound to be soluble in water? Why/Why not? Calculate anything you need in order to figure this out, and explain your answer.arrow_forwardExplain the meaning of ‘Equilibrium lattice constant’.arrow_forward
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning