
(a)
Interpretation: For the given set of compounds, the net molecular dipole moment has to be indicated.
Concept Introduction: Dipole moment is the measure of net molecular polarity. Dipole moment can be determined experimentally and its value can give an idea of the polar character of a molecule. It is a vector quantity as it has a direction as well as magnitude.
The direction of dipole moment is usually represented by an arrow pointing from positive end towards the negative end. The sum of all vectors in a compound is called the molecular dipole moment. It can be given by considering both magnitude and the direction of each individual dipole moment involved in that compound.
If dipole moments of the individual bonds are equal in magnitude but in opposite direction, there is no net molecular dipole moment. If dipole moments of the individual bonds aren’t in opposite direction, there is a net molecular dipole moment.
According to VSEPR (Valence Shell Electron Pair Repulsion) theory, each molecule gets a unique structure. That structure is explained by considering steric number of that molecule. The steric number is the combination of both number of σ-bonds and number of lone pairs involved in a particular molecule.
σ-bonds are formed by the mutual sharing of electrons between the two atoms. As a result, bond between two atoms is formed. This type of bond is called covalent bond. In this process, bonding electron pairs are involved. Non-bonding electrons are not involved in the bond formation. They are called lone pairs.
The geometry of the central atom will be determined by counting the steric number followed by the hybridization state of that central atom and finally electronic arrangement of atoms in space.
If the steric number is 4, the central atom has sp3 hybridized and the electronic arrangement of atoms in space (i.e. geometry) will be tetrahedral. If the steric number is 3, the central atom has sp2 hybridized and the electronic arrangement of atoms in space (i.e. geometry) will be trigonal planar. If the steric number is 2, the central atom has sp hybridized and the electronic arrangement of atoms in space (i.e. geometry) will be linear.
To find: Indicate the direction of the net molecular dipole moment for the compound CHCl3
(b)
Interpretation: For the given set of compounds, the net molecular dipole moment has to be indicated.
Concept Introduction: Dipole moment is the measure of net molecular polarity. Dipole moment can be determined experimentally and its value can give an idea of the polar character of a molecule. It is a vector quantity as it has a direction as well as magnitude.
The direction of dipole moment is usually represented by an arrow pointing from positive end towards the negative end. The sum of all vectors in a compound is called the molecular dipole moment. It can be given by considering both magnitude and the direction of each individual dipole moment involved in that compound.
If dipole moments of the individual bonds are equal in magnitude but in opposite direction, there is no net molecular dipole moment. If dipole moments of the individual bonds aren’t in opposite direction, there is a net molecular dipole moment.
According to VSEPR (Valence Shell Electron Pair Repulsion) theory, each molecule gets a unique structure. That structure is explained by considering steric number of that molecule. The steric number is the combination of both number of σ-bonds and number of lone pairs involved in a particular molecule.
σ-bonds are formed by the mutual sharing of electrons between the two atoms. As a result, bond between two atoms is formed. This type of bond is called covalent bond. In this process, bonding electron pairs are involved. Non-bonding electrons are not involved in the bond formation. They are called lone pairs.
The geometry of the central atom will be determined by counting the steric number followed by the hybridization state of that central atom and finally electronic arrangement of atoms in space.
If the steric number is 4, the central atom has sp3 hybridized and the electronic arrangement of atoms in space (i.e. geometry) will be tetrahedral. If the steric number is 3, the central atom has sp2 hybridized and the electronic arrangement of atoms in space (i.e. geometry) will be trigonal planar. If the steric number is 2, the central atom has sp hybridized and the electronic arrangement of atoms in space (i.e. geometry) will be linear.
To find: Indicate the direction of the net molecular dipole moment for the compound (b)
(c)
Interpretation: For the given set of compounds, the net molecular dipole moment has to be indicated.
Concept Introduction: Dipole moment is the measure of net molecular polarity. Dipole moment can be determined experimentally and its value can give an idea of the polar character of a molecule. It is a vector quantity as it has a direction as well as magnitude.
The direction of dipole moment is usually represented by an arrow pointing from positive end towards the negative end. The sum of all vectors in a compound is called the molecular dipole moment. It can be given by considering both magnitude and the direction of each individual dipole moment involved in that compound.
If dipole moments of the individual bonds are equal in magnitude but in opposite direction, there is no net molecular dipole moment. If dipole moments of the individual bonds aren’t in opposite direction, there is a net molecular dipole moment.
According to VSEPR (Valence Shell Electron Pair Repulsion) theory, each molecule gets a unique structure. That structure is explained by considering steric number of that molecule. The steric number is the combination of both number of σ-bonds and number of lone pairs involved in a particular molecule.
σ-bonds are formed by the mutual sharing of electrons between the two atoms. As a result, bond between two atoms is formed. This type of bond is called covalent bond. In this process, bonding electron pairs are involved. Non-bonding electrons are not involved in the bond formation. They are called lone pairs.
The geometry of the central atom will be determined by counting the steric number followed by the hybridization state of that central atom and finally electronic arrangement of atoms in space.
If the steric number is 4, the central atom has sp3 hybridized and the electronic arrangement of atoms in space (i.e. geometry) will be tetrahedral. If the steric number is 3, the central atom has sp2 hybridized and the electronic arrangement of atoms in space (i.e. geometry) will be trigonal planar. If the steric number is 2, the central atom has sp hybridized and the electronic arrangement of atoms in space (i.e. geometry) will be linear.
To find: Indicate the direction of the net molecular dipole moment for the compound (c)
(d)
Interpretation: For the given set of compounds, the net molecular dipole moment has to be indicated.
Concept Introduction: Dipole moment is the measure of net molecular polarity. Dipole moment can be determined experimentally and its value can give an idea of the polar character of a molecule. It is a vector quantity as it has a direction as well as magnitude.
The direction of dipole moment is usually represented by an arrow pointing from positive end towards the negative end. The sum of all vectors in a compound is called the molecular dipole moment. It can be given by considering both magnitude and the direction of each individual dipole moment involved in that compound.
If dipole moments of the individual bonds are equal in magnitude but in opposite direction, there is no net molecular dipole moment. If dipole moments of the individual bonds aren’t in opposite direction, there is a net molecular dipole moment.
According to VSEPR (Valence Shell Electron Pair Repulsion) theory, each molecule gets a unique structure. That structure is explained by considering steric number of that molecule. The steric number is the combination of both number of σ-bonds and number of lone pairs involved in a particular molecule.
σ-bonds are formed by the mutual sharing of electrons between the two atoms. As a result, bond between two atoms is formed. This type of bond is called covalent bond. In this process, bonding electron pairs are involved. Non-bonding electrons are not involved in the bond formation. They are called lone pairs.
The geometry of the central atom will be determined by counting the steric number followed by the hybridization state of that central atom and finally electronic arrangement of atoms in space.
If the steric number is 4, the central atom has sp3 hybridized and the electronic arrangement of atoms in space (i.e. geometry) will be tetrahedral. If the steric number is 3, the central atom has sp2 hybridized and the electronic arrangement of atoms in space (i.e. geometry) will be trigonal planar. If the steric number is 2, the central atom has sp hybridized and the electronic arrangement of atoms in space (i.e. geometry) will be linear.
To find: Indicate the direction of the net molecular dipole moment for the compound (d)
(e)
Interpretation: For the given set of compounds, the net molecular dipole moment has to be indicated.
Concept Introduction: Dipole moment is the measure of net molecular polarity. Dipole moment can be determined experimentally and its value can give an idea of the polar character of a molecule. It is a vector quantity as it has a direction as well as magnitude.
The direction of dipole moment is usually represented by an arrow pointing from positive end towards the negative end. The sum of all vectors in a compound is called the molecular dipole moment. It can be given by considering both magnitude and the direction of each individual dipole moment involved in that compound.
If dipole moments of the individual bonds are equal in magnitude but in opposite direction, there is no net molecular dipole moment. If dipole moments of the individual bonds aren’t in opposite direction, there is a net molecular dipole moment.
According to VSEPR (Valence Shell Electron Pair Repulsion) theory, each molecule gets a unique structure. That structure is explained by considering steric number of that molecule. The steric number is the combination of both number of σ-bonds and number of lone pairs involved in a particular molecule.
σ-bonds are formed by the mutual sharing of electrons between the two atoms. As a result, bond between two atoms is formed. This type of bond is called covalent bond. In this process, bonding electron pairs are involved. Non-bonding electrons are not involved in the bond formation. They are called lone pairs.
The geometry of the central atom will be determined by counting the steric number followed by the hybridization state of that central atom and finally electronic arrangement of atoms in space.
If the steric number is 4, the central atom has sp3 hybridized and the electronic arrangement of atoms in space (i.e. geometry) will be tetrahedral. If the steric number is 3, the central atom has sp2 hybridized and the electronic arrangement of atoms in space (i.e. geometry) will be trigonal planar. If the steric number is 2, the central atom has sp hybridized and the electronic arrangement of atoms in space (i.e. geometry) will be linear.
To find: Indicate the direction of the net molecular dipole moment for the compound (e)
(f)
Interpretation: For the given set of compounds, the net molecular dipole moment has to be indicated.
Concept Introduction: Dipole moment is the measure of net molecular polarity. Dipole moment can be determined experimentally and its value can give an idea of the polar character of a molecule. It is a vector quantity as it has a direction as well as magnitude.
The direction of dipole moment is usually represented by an arrow pointing from positive end towards the negative end. The sum of all vectors in a compound is called the molecular dipole moment. It can be given by considering both magnitude and the direction of each individual dipole moment involved in that compound.
If dipole moments of the individual bonds are equal in magnitude but in opposite direction, there is no net molecular dipole moment. If dipole moments of the individual bonds aren’t in opposite direction, there is a net molecular dipole moment.
According to VSEPR (Valence Shell Electron Pair Repulsion) theory, each molecule gets a unique structure. That structure is explained by considering steric number of that molecule. The steric number is the combination of both number of σ-bonds and number of lone pairs involved in a particular molecule.
σ-bonds are formed by the mutual sharing of electrons between the two atoms. As a result, bond between two atoms is formed. This type of bond is called covalent bond. In this process, bonding electron pairs are involved. Non-bonding electrons are not involved in the bond formation. They are called lone pairs.
The geometry of the central atom will be determined by counting the steric number followed by the hybridization state of that central atom and finally electronic arrangement of atoms in space.
If the steric number is 4, the central atom has sp3 hybridized and the electronic arrangement of atoms in space (i.e. geometry) will be tetrahedral. If the steric number is 3, the central atom has sp2 hybridized and the electronic arrangement of atoms in space (i.e. geometry) will be trigonal planar. If the steric number is 2, the central atom has sp hybridized and the electronic arrangement of atoms in space (i.e. geometry) will be linear.
To find: Indicate the direction of the net molecular dipole moment for the compound (f)
(g)
Interpretation: For the given set of compounds, the net molecular dipole moment has to be indicated.
Concept Introduction: Dipole moment is the measure of net molecular polarity. Dipole moment can be determined experimentally and its value can give an idea of the polar character of a molecule. It is a vector quantity as it has a direction as well as magnitude.
The direction of dipole moment is usually represented by an arrow pointing from positive end towards the negative end. The sum of all vectors in a compound is called the molecular dipole moment. It can be given by considering both magnitude and the direction of each individual dipole moment involved in that compound.
If dipole moments of the individual bonds are equal in magnitude but in opposite direction, there is no net molecular dipole moment. If dipole moments of the individual bonds aren’t in opposite direction, there is a net molecular dipole moment.
According to VSEPR (Valence Shell Electron Pair Repulsion) theory, each molecule gets a unique structure. That structure is explained by considering steric number of that molecule. The steric number is the combination of both number of σ-bonds and number of lone pairs involved in a particular molecule.
σ-bonds are formed by the mutual sharing of electrons between the two atoms. As a result, bond between two atoms is formed. This type of bond is called covalent bond. In this process, bonding electron pairs are involved. Non-bonding electrons are not involved in the bond formation. They are called lone pairs.
The geometry of the central atom will be determined by counting the steric number followed by the hybridization state of that central atom and finally electronic arrangement of atoms in space.
If the steric number is 4, the central atom has sp3 hybridized and the electronic arrangement of atoms in space (i.e. geometry) will be tetrahedral. If the steric number is 3, the central atom has sp2 hybridized and the electronic arrangement of atoms in space (i.e. geometry) will be trigonal planar. If the steric number is 2, the central atom has sp hybridized and the electronic arrangement of atoms in space (i.e. geometry) will be linear.
To find: Indicate the direction of the net molecular dipole moment for the compound (g)
(h)
Interpretation: For the given set of compounds, the net molecular dipole moment has to be indicated.
Concept Introduction: Dipole moment is the measure of net molecular polarity. Dipole moment can be determined experimentally and its value can give an idea of the polar character of a molecule. It is a vector quantity as it has a direction as well as magnitude.
The direction of dipole moment is usually represented by an arrow pointing from positive end towards the negative end. The sum of all vectors in a compound is called the molecular dipole moment. It can be given by considering both magnitude and the direction of each individual dipole moment involved in that compound.
If dipole moments of the individual bonds are equal in magnitude but in opposite direction, there is no net molecular dipole moment. If dipole moments of the individual bonds aren’t in opposite direction, there is a net molecular dipole moment.
According to VSEPR (Valence Shell Electron Pair Repulsion) theory, each molecule gets a unique structure. That structure is explained by considering steric number of that molecule. The steric number is the combination of both number of σ-bonds and number of lone pairs involved in a particular molecule.
σ-bonds are formed by the mutual sharing of electrons between the two atoms. As a result, bond between two atoms is formed. This type of bond is called covalent bond. In this process, bonding electron pairs are involved. Non-bonding electrons are not involved in the bond formation. They are called lone pairs.
The geometry of the central atom will be determined by counting the steric number followed by the hybridization state of that central atom and finally electronic arrangement of atoms in space.
If the steric number is 4, the central atom has sp3 hybridized and the electronic arrangement of atoms in space (i.e. geometry) will be tetrahedral. If the steric number is 3, the central atom has sp2 hybridized and the electronic arrangement of atoms in space (i.e. geometry) will be trigonal planar. If the steric number is 2, the central atom has sp hybridized and the electronic arrangement of atoms in space (i.e. geometry) will be linear.
To find: Indicate the direction of the net molecular dipole moment for the compound (h)
(i)
Interpretation: For the given set of compounds, the net molecular dipole moment has to be indicated.
Concept Introduction: Dipole moment is the measure of net molecular polarity. Dipole moment can be determined experimentally and its value can give an idea of the polar character of a molecule. It is a vector quantity as it has a direction as well as magnitude.
The direction of dipole moment is usually represented by an arrow pointing from positive end towards the negative end. The sum of all vectors in a compound is called the molecular dipole moment. It can be given by considering both magnitude and the direction of each individual dipole moment involved in that compound.
If dipole moments of the individual bonds are equal in magnitude but in opposite direction, there is no net molecular dipole moment. If dipole moments of the individual bonds aren’t in opposite direction, there is a net molecular dipole moment.
According to VSEPR (Valence Shell Electron Pair Repulsion) theory, each molecule gets a unique structure. That structure is explained by considering steric number of that molecule. The steric number is the combination of both number of σ-bonds and number of lone pairs involved in a particular molecule.
σ-bonds are formed by the mutual sharing of electrons between the two atoms. As a result, bond between two atoms is formed. This type of bond is called covalent bond. In this process, bonding electron pairs are involved. Non-bonding electrons are not involved in the bond formation. They are called lone pairs.
The geometry of the central atom will be determined by counting the steric number followed by the hybridization state of that central atom and finally electronic arrangement of atoms in space.
If the steric number is 4, the central atom has sp3 hybridized and the electronic arrangement of atoms in space (i.e. geometry) will be tetrahedral. If the steric number is 3, the central atom has sp2 hybridized and the electronic arrangement of atoms in space (i.e. geometry) will be trigonal planar. If the steric number is 2, the central atom has sp hybridized and the electronic arrangement of atoms in space (i.e. geometry) will be linear.
To find: Indicate the direction of the net molecular dipole moment for the compound (i)
(j)
Interpretation: For the given set of compounds, the net molecular dipole moment has to be indicated.
Concept Introduction: Dipole moment is the measure of net molecular polarity. Dipole moment can be determined experimentally and its value can give an idea of the polar character of a molecule. It is a vector quantity as it has a direction as well as magnitude.
The direction of dipole moment is usually represented by an arrow pointing from positive end towards the negative end. The sum of all vectors in a compound is called the molecular dipole moment. It can be given by considering both magnitude and the direction of each individual dipole moment involved in that compound.
If dipole moments of the individual bonds are equal in magnitude but in opposite direction, there is no net molecular dipole moment. If dipole moments of the individual bonds aren’t in opposite direction, there is a net molecular dipole moment.
According to VSEPR (Valence Shell Electron Pair Repulsion) theory, each molecule gets a unique structure. That structure is explained by considering steric number of that molecule. The steric number is the combination of both number of σ-bonds and number of lone pairs involved in a particular molecule.
σ-bonds are formed by the mutual sharing of electrons between the two atoms. As a result, bond between two atoms is formed. This type of bond is called covalent bond. In this process, bonding electron pairs are involved. Non-bonding electrons are not involved in the bond formation. They are called lone pairs.
The geometry of the central atom will be determined by counting the steric number followed by the hybridization state of that central atom and finally electronic arrangement of atoms in space.
If the steric number is 4, the central atom has sp3 hybridized and the electronic arrangement of atoms in space (i.e. geometry) will be tetrahedral. If the steric number is 3, the central atom has sp2 hybridized and the electronic arrangement of atoms in space (i.e. geometry) will be trigonal planar. If the steric number is 2, the central atom has sp hybridized and the electronic arrangement of atoms in space (i.e. geometry) will be linear.
To find: Indicate the direction of the net molecular dipole moment for the compound (j)
(k)
Interpretation: For the given set of compounds, the net molecular dipole moment has to be indicated.
Concept Introduction: Dipole moment is the measure of net molecular polarity. Dipole moment can be determined experimentally and its value can give an idea of the polar character of a molecule. It is a vector quantity as it has a direction as well as magnitude.
The direction of dipole moment is usually represented by an arrow pointing from positive end towards the negative end. The sum of all vectors in a compound is called the molecular dipole moment. It can be given by considering both magnitude and the direction of each individual dipole moment involved in that compound.
If dipole moments of the individual bonds are equal in magnitude but in opposite direction, there is no net molecular dipole moment. If dipole moments of the individual bonds aren’t in opposite direction, there is a net molecular dipole moment.
According to VSEPR (Valence Shell Electron Pair Repulsion) theory, each molecule gets a unique structure. That structure is explained by considering steric number of that molecule. The steric number is the combination of both number of σ-bonds and number of lone pairs involved in a particular molecule.
σ-bonds are formed by the mutual sharing of electrons between the two atoms. As a result, bond between two atoms is formed. This type of bond is called covalent bond. In this process, bonding electron pairs are involved. Non-bonding electrons are not involved in the bond formation. They are called lone pairs.
The geometry of the central atom will be determined by counting the steric number followed by the hybridization state of that central atom and finally electronic arrangement of atoms in space.
If the steric number is 4, the central atom has sp3 hybridized and the electronic arrangement of atoms in space (i.e. geometry) will be tetrahedral. If the steric number is 3, the central atom has sp2 hybridized and the electronic arrangement of atoms in space (i.e. geometry) will be trigonal planar. If the steric number is 2, the central atom has sp hybridized and the electronic arrangement of atoms in space (i.e. geometry) will be linear.
To find: Indicate the direction of the net molecular dipole moment for the compound (k)
(l)
Interpretation: For the given set of compounds, the net molecular dipole moment has to be indicated.
Concept Introduction: Dipole moment is the measure of net molecular polarity. Dipole moment can be determined experimentally and its value can give an idea of the polar character of a molecule. It is a vector quantity as it has a direction as well as magnitude.
The direction of dipole moment is usually represented by an arrow pointing from positive end towards the negative end. The sum of all vectors in a compound is called the molecular dipole moment. It can be given by considering both magnitude and the direction of each individual dipole moment involved in that compound.
If dipole moments of the individual bonds are equal in magnitude but in opposite direction, there is no net molecular dipole moment. If dipole moments of the individual bonds aren’t in opposite direction, there is a net molecular dipole moment.
According to VSEPR (Valence Shell Electron Pair Repulsion) theory, each molecule gets a unique structure. That structure is explained by considering steric number of that molecule. The steric number is the combination of both number of σ-bonds and number of lone pairs involved in a particular molecule.
σ-bonds are formed by the mutual sharing of electrons between the two atoms. As a result, bond between two atoms is formed. This type of bond is called covalent bond. In this process, bonding electron pairs are involved. Non-bonding electrons are not involved in the bond formation. They are called lone pairs.
The geometry of the central atom will be determined by counting the steric number followed by the hybridization state of that central atom and finally electronic arrangement of atoms in space.
If the steric number is 4, the central atom has sp3 hybridized and the electronic arrangement of atoms in space (i.e. geometry) will be tetrahedral. If the steric number is 3, the central atom has sp2 hybridized and the electronic arrangement of atoms in space (i.e. geometry) will be trigonal planar. If the steric number is 2, the central atom has sp hybridized and the electronic arrangement of atoms in space (i.e. geometry) will be linear.
To find: Indicate the direction of the net molecular dipole moment for the compound (l)

Want to see the full answer?
Check out a sample textbook solution
Chapter 1 Solutions
Organic Chemistry, Binder Ready Version
- a) Write out 6 completely different reactions of acetophenone (reagent, product). b) Write out 3 preparations of 1-methylcyclohexanol, using a different starting material for each one. You may use preps where you just change the functional group, and/or preps where you construct the carbon chain. c) Write out 3 preparations of 2-ethoxybenzoic acid, a different starting material for each one. You may use preps where you just change the functional group, and/or preps where you construct the carbon chain.arrow_forward12. CH3 OH OH H&C CH3 H₂C N OH H₂C CH3 H&C CH3 H₂C' CH3 H.C CH3OH H.C CH2CH3OH CH3CEN Which one of these 17 compounds is represented by this IR and this 'H NMR spectrum? IR Spectrum 3000 4000 3000 NMR Spectrum 2000 £500 RAVENUMBER 2000 1500 9 8 6 5 10 HP-00-290 ppm m 1000 500 1000 4 °arrow_forwardDraw the structure of (E,6R) 6-methoxy-4-hepten-2-one. Give the IUPAC name of this compound, including stereochemistry. Draw the most stable chair conformation of (cis) 1,3-isobutylcyclohexane. H HC=CCH₂ CH2CH3 EN(CH3)2 -CN(CH3)2arrow_forward
- 10. Write out the mechanism (intermediate/transition state) for this reaction; indicate stereochemistry in product. H3C CH₂OH CH3 SN1 Harrow_forwardWrite "most" under the member of each trio which is most stable. Write "least under the member of each trio which is least stable. b) Draw a Fischer projection of a pair of enantiomers with three chiral carbons. Which of these two would you expect to be more soluble in water? Why? 1-butanol 1-heptanol Which of these two would you expect to have the higher boiling point? Why? hexyl methyl ether 1-heptanolarrow_forwardWrite "most" under the most acidic compound. Write "least" under the least acidic compound. OH NO₂ OCH3 Br 9. Compound X, C50H84F2, reacts with excess H2/Pd to give a C50H88F2 compound. How many rings are in X? How many double bonds are in X? Show your work.arrow_forward
- 4. State whether these two are: a) the same molecule b) c) d) different compounds that are not isomers constitutional isomers diastereomers e) enantiomers CH3 CH₁₂ H OH HO H H OH HO H CH, CH₂ 5. a) How many stereocenters does this compound have? b) How many stereoisomers are possible for this compound? CH₂ OH CHCHarrow_forwardCalculating the pH at equivalence of a titration A chemist titrates 210.0 mL of a 0.1003 M hydrobromic acid (HBr) solution with 0.7550M KOH solution at 25 °C. Calculate the pH at equivalence. Round your answer to 2 decimal places. Note for advanced students: you may assume the total volume of the solution equals the initial volume plus the volume of KOH solution added. pH = ] ☑ o0o 18 Ararrow_forwardDo you do chemistry assignmentsarrow_forward
- Using the conditions of spontaneity to deduce the signs of AH and AS Use the observations about each chemical reaction in the table below to decide the sign (positive or negative) of the reaction enthalpy AH and reaction entropy AS. Note: if you have not been given enough information to decide a sign, select the "unknown" option. reaction observations conclusions A This reaction is always spontaneous, but proceeds slower at temperatures above 120. °C. ΔΗ is (pick one) AS is (pick one) ΔΗ is (pick one) B This reaction is spontaneous except above 117. °C. AS is (pick one) ΔΗ is (pick one) This reaction is slower below 20. °C than C above. AS is |(pick one) ? 18 Ar 1arrow_forwardCalculating the pH at equivalence of a titration Try Again Your answer is incorrect. 0/5 a A chemist titrates 70.0 mL of a 0.7089 M hydrocyanic acid (HCN) solution with 0.4574M KOH solution at 25 °C. Calculate the pH at equivalence. The pK of hydrocyanic acid is 9.21. Round your answer to 2 decimal places. Note for advanced students: you may assume the total volume of the solution equals the initial volume plus the volume of KOH solution added. pH = 11.43] G 00. 18 Ar B•arrow_forwardBiological Macromolecules Naming and drawing the products of aldose oxidation and reduction aw a Fischer projection of the molecule that would produce L-ribonic acid if it were subjected to mildly oxidizing reaction conditions. Click and drag to start drawing a structure. X AP ‡ 1/5 Naor Explanation Check McGraw Hill LLC. All Rights Reserved. Terms of Use Privacy Center Accessibilarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





