(a)
Interpretation:
To find which two compounds are constitutional isomers of the given three structures
Concept introduction:
Constitutional isomers are the compounds which have same molecular formula but differ in connectivity between the atoms present in it.
The atomic orbitals mix together to form a hybrid orbital which is suitable for forming bonds between the atoms to form a compound. This mixing of hybrid orbitals is known as hybridization. The hybridization determines the geometry of the particular atom in the compound. Shortly to say
trigonal pyramidal(if one lone pair of electron is present)
bent geometry (if two lone pair of electrons are present)
To find:
Constitutional isomers in the given three compounds.
(b)
Interpretation:
To find which compound has nitrogen in trigonal pyramidal geometry
Concept introduction:
A bond is formed by sharing of valence electrons. A
To identify: Which compound has nitrogen atom with trigonal pyramidal geometry.
(c)
Interpretation:
To find which two compounds are constitutional isomers of the given three structures
Concept introduction:
A bond is formed by sharing of valence electrons. A
To identify: Which compound has larger number of
(d)
Interpretation:
To find which two compounds are constitutional isomers of the given three structures
Concept introduction:
A bond is formed by sharing of valence electrons. A
To identify: Which compound has lesser number of
(e)
Interpretation:
To find which two compounds are constitutional isomers of the given three structures
Concept introduction:
The atomic orbitals mix together to form a hybrid orbital which is suitable for forming bonds between the atoms to form a compound. This mixing of hybrid orbitals is known as hybridization. The hybridization determines the geometry of the particular atom in the compound. Shortly to say
trigonal pyramidal(if one lone pair of electron is present)
bent geometry (if two lone pair of electrons are present)
To identify: Which compound has more number of
(f)
Interpretation:
To find which two compounds are constitutional isomers of the given three structures
Concept introduction:
The atomic orbitals mix together to form a hybrid orbital which is suitable for forming bonds between the atoms to form a compound. This mixing of hybrid orbitals is known as hybridization. The hybridization determines the geometry of the particular atom in the compound. Shortly to say
trigonal pyramidal(if one lone pair of electron is present)
bent geometry (if two lone pair of electrons are present)
To identify: Which compound has carbon atom with
(g)
Interpretation:
To find which two compounds are constitutional isomers of the given three structures
Concept introduction:
Boiling point of a compound is the temperature at which the compound start to escape into vapor phase from liquid state when temperature is raised. The total number of carbon atoms determines the boiling point of the compound.
To identify: Which compound has all atoms with
(h)
Interpretation:
To find which two compounds are constitutional isomers of the given three structures
To identify: Which compound has high boiling point.
Want to see the full answer?
Check out a sample textbook solutionChapter 1 Solutions
Organic Chemistry, Binder Ready Version
- 7. Calculate the following for a 1.50 M Ca(OH)2 solution. a. The concentration of hydroxide, [OH-] b. The concentration of hydronium, [H3O+] c. The pOH d. The pHarrow_forwardA first order reaction is 46.0% complete at the end of 59.0 minutes. What is the value of k? What is the half-life for this reaction? HOW DO WE GET THERE? The integrated rate law will be used to determine the value of k. In [A] [A]。 = = -kt What is the value of [A] [A]。 when the reaction is 46.0% complete?arrow_forward3. Provide the missing compounds or reagents. 1. H,NNH КОН 4 EN MN. 1. HBUCK = 8 хно Panely prowseful kanti-chuprccant fad, winddively, can lead to the crading of deduc din-willed, tica, The that chemooices in redimi Грин. " like (for alongan Ridovi MN نيا . 2. Cl -BuO 1. NUH 2.A A -BuOK THE CF,00,H Ex 5)arrow_forward
- 2. Write a complete mechanism for the reaction shown below. NaOCH LOCH₁ O₂N NO2 CH₂OH, 20 °C O₂N NO2arrow_forward4. Propose a synthesis of the target molecules from the respective starting materials. a) b) LUCH C Br OHarrow_forwardThe following mechanism for the gas phase reaction of H2 and ICI that is consistent with the observed rate law is: step 1 step 2 slow: H2(g) +ICI(g) → HCl(g) + HI(g) fast: ICI(g) + HI(g) → HCl(g) + |2(g) (1) What is the equation for the overall reaction? Use the smallest integer coefficients possible. If a box is not needed, leave it blank. + → + (2) Which species acts as a catalyst? Enter formula. If none, leave box blank: (3) Which species acts as a reaction intermediate? Enter formula. If none, leave box blank: (4) Complete the rate law for the overall reaction that is consistent with this mechanism. (Use the form k[A][B]"..., where '1' is understood (so don't write it) for m, n etc.) Rate =arrow_forward
- Please correct answer and don't use hand rating and don't use Ai solutionarrow_forward1. For each of the following statements, indicate whether they are true of false. ⚫ the terms primary, secondary and tertiary have different meanings when applied to amines than they do when applied to alcohols. • a tertiary amine is one that is bonded to a tertiary carbon atom (one with three C atoms bonded to it). • simple five-membered heteroaromatic compounds (e.g. pyrrole) are typically more electron rich than benzene. ⚫ simple six-membered heteroaromatic compounds (e.g. pyridine) are typically more electron rich than benzene. • pyrrole is very weakly basic because protonation anywhere on the ring disrupts the aromaticity. • thiophene is more reactive than benzene toward electrophilic aromatic substitution. • pyridine is more reactive than nitrobenzene toward electrophilic aromatic substitution. • the lone pair on the nitrogen atom of pyridine is part of the pi system.arrow_forwardThe following reactions are NOT ordered in the way in which they occur. Reaction 1 PhO-OPh Reaction 2 Ph-O -CH₂ heat 2 *OPh Pho -CH2 Reaction 3 Ph-O ⚫OPh + -CH₂ Reaction 4 Pho Pho + H₂C OPh + CHOPh H₂C -CH₂ Reactions 1 and 3 Reaction 2 O Reaction 3 ○ Reactions 3 and 4 ○ Reactions 1 and 2 Reaction 4 ○ Reaction 1arrow_forward
- Select all possible products from the following reaction: NaOH H₂O a) b) ОН HO O HO HO e) ОН f) O HO g) h) + OHarrow_forward3. Draw diagrams to represent the conjugation in these molecules. Draw two types of diagram: a. Show curly arrows linking at least two different ways of representing the molecule b. Indicate with dotted lines and partial charges (where necessary) the partial double bond (and charge) distribution H₂N* H₂N -NH2arrow_forwardQuestion 2 of 25 point Question Attempt 3 of Ulimited Draw the structure for 3-chloro-4-ethylheptane. Part 2 of 3 Click and drag to start drawing a structure. Draw the structure for 1-chloro-4-ethyl-3-lodooctane. Click and drag to start drawing a structure. X G X B c Part 3 of 30 Draw the structure for (R)-2-chlorobutane. Include the stereochemistry at all stereogenic centers. Check Click and drag to start drawing a structure. G X A 。 MacBook Pro G P Save For Later Submit Assignment Privacyarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY