Fundamentals of Heat and Mass Transfer
Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 11, Problem 11.57P

The chief engineer at a university that is constructing alarge number of new student dormitories decides toinstall a counterflow concentric tube heat exchangeron each of the dormitory shower drains. The thin- walled copper drains are of diameter D i = 50  mm .Wastewater from the shower enters the heat exchangerat T h , i = 38 ° C while fresh water enters the dormitory at T c , i = 10 ° C .The wastewater flows down the verticalwall of the drain in a thin, falling fun, providing h h = 10 , 000  W/m 2 K .

Chapter 11, Problem 11.57P, The chief engineer at a university that is constructing alarge number of new student dormitories
(a) If the annular gap is d = 10  mm , the heatexchanger length is L = 1  m , and the water flowrate is m ˙ = 10  kg/min , determine the heat transferrate and the outlet temperature of the warmedfresh water.
(b) If a helical spring is installed in the annular gap sothe fresh water b forced to follow a spiral path
from the inlet to the fresh water outlet, resulting in h c = 9050  W/m 2 K , determine the heat transfer
rate and the outlet temperature of the fresh water.
(c) Based on the result for part (b), calculate the dailysavings if 15 , 000 students each take a 10-minute
shower per day and the cost of water heating is $ 0.0 7/kW h .

Blurred answer
Students have asked these similar questions
The chief engineer at a university that is constructing a large number of new student dormitories decides to install a counter flow concentric tube heat exchanger on each of the dormitory shower drains. The thin walled copper drains are of diameter Di = 50 mm. Wastewater from the shower enters the heat exchanger at Th,i= 38°C while fresh water enters the dormitory at Tc,i= 10° The wastewater flows down the vertical wall of the drain in a thin, falling fil , providing hh = 10,000 W/m2. K.If the annular gap is d= 10 mm, the heat exchanger length is L= 1 m, and the water flow rate is m˙ =10 kg/min, determine the heat transfer rate and the outlet temperature of the warmed fresh water.If a helical spring is installed in the annular gap so the fresh water is forced to follow a spiral path from the inlet to the fresh water outlet, resulting in hc = 9050 W/m2.K, determine the heat transfer rate and the outlet temperature of the fresh water.Based on the result for part (b), calculate the daily…
PLZ I want full answer with all solution steps A heat exchanger is to be designed to heat 32/68 mixture of ethylene glycol and water from 24 °C to 55 °C by a hot water stream from 79 °C to 42 °C. Flow rate of cold stream is 20 kg/s. Inlet pressure for both stream is 50 psi and the maximum pressure drop of 10 psi for cold stream and 8 psi for hot water are permissible. Report valid assumptions made for the design and give required justification. Estimate i) Heat Transfer, Corrected LMTD, ii) Tube bundle diameter (Using TEMA standards and Codes) and Tube cross sectional area iii) Heat transfer coefficient iv) Overall heat transfer coefficient v) Pressure Drop (Shell side & Tube Side) note: Assume any values for the missing data
Concentric tube heat exchanger (tubular or tube in tube) is used for a large industrial gas turbine. The dimensions and values are given. One of the steps is not required to find the required length of the HX, if the oil leaves at 60 C? Oil and water inlet temperatures are 100 and 30 C, respectively. Thermal entry length to validate the steps O None of the above Log mean temperature difference Reynolds number, Prandtl number and Nusselt number O Overall heat transfer coefficient

Chapter 11 Solutions

Fundamentals of Heat and Mass Transfer

Ch. 11 - Prob. 11.12PCh. 11 - A process fluid having a specific heat of...Ch. 11 - A shell-and-tube exchanger (two shells, four tube...Ch. 11 - Consider the heat exchanger of Problem 11.14....Ch. 11 - The hot and cold inlet temperatures to a...Ch. 11 - A concentric tube heat exchanger of length L = 2 m...Ch. 11 - A counterflow, concentric tube heat exchanger is...Ch. 11 - Consider a concentric tube heat exchanger with an...Ch. 11 - A shell-and-tube heat exchanger must be designed...Ch. 11 - A concentric tube heat exchanger for cooling...Ch. 11 - A counterflow, concentric tube heat exchanger used...Ch. 11 - An automobile radiator may be viewed as a...Ch. 11 - Hot air for a large-scale drying operation is to...Ch. 11 - In a dairy operation, milk at a flow rate of 250...Ch. 11 - The compartment heater of an automobile...Ch. 11 - A counterflow, twin-tube heat exchanger is made...Ch. 11 - Consider a coupled shell-in-tube heat exchange...Ch. 11 - For health reasons, public spaces require the...Ch. 11 - A shell-and-tube heat exchanger (1 shell pass, 2...Ch. 11 - Saturated water vapor leaves a steam turbine at a...Ch. 11 - The human brain is especially sensitive to...Ch. 11 - Prob. 11.47PCh. 11 - A plate-tin heat exchanger is used to condense a...Ch. 11 - In a supercomputer, signal propagation delays...Ch. 11 - Untapped geothermal sites in the United States...Ch. 11 - A shell-and-tube heat exchanger consists of 135...Ch. 11 - An ocean thermal energy conversion system is...Ch. 11 - Prob. 11.55PCh. 11 - Prob. 11.56PCh. 11 - The chief engineer at a university that is...Ch. 11 - A shell-and-tube heat exchanger with one shell...Ch. 11 - Prob. 11.59PCh. 11 - Prob. 11.60PCh. 11 - Prob. 11.61PCh. 11 - Prob. 11.62PCh. 11 - A recuperator is a heat exchanger that heats air...Ch. 11 - Prob. 11.64PCh. 11 - Prob. 11.65PCh. 11 - A cross-flow heat exchanger consists of a bundle...Ch. 11 - Exhaust gas from a furnace is used to preheat the...Ch. 11 - Prob. 11.68PCh. 11 - A liquefied natural gas (LNG) regasification...Ch. 11 - Prob. 11.70PCh. 11 - A shell-and-tube heat exchanger consisting of...Ch. 11 - Prob. 11.73PCh. 11 - The power needed to overcome wind and friction...Ch. 11 - Prob. 11.75PCh. 11 - Consider a Rankine cycle with saturated steam...Ch. 11 - Consider the Rankine cycle of Problem 11.77,...Ch. 11 - Prob. 11.79PCh. 11 - Prob. 11.80PCh. 11 - Hot exhaust gases are used in a...Ch. 11 - Prob. 11.84PCh. 11 - Prob. 11.90PCh. 11 - Prob. 11S.1PCh. 11 - Prob. 11S.2PCh. 11 - Prob. 11S.3PCh. 11 - Solve Problem 11.15 using the LMTD method.Ch. 11 - Prob. 11S.5PCh. 11 - Prob. 11S.6PCh. 11 - Prob. 11S.8PCh. 11 - Prob. 11S.10PCh. 11 - Prob. 11S.11PCh. 11 - A cooling coil consists of a bank of aluminum...Ch. 11 - Prob. 11S.17P

Additional Engineering Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
How Shell and Tube Heat Exchangers Work (Engineering); Author: saVRee;https://www.youtube.com/watch?v=OyQ3SaU4KKU;License: Standard Youtube License