Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 11.65P
To determine
The exit temperature of cold water.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A single-shell, four-tube-pass heat exchanger is used to cool water flowing at 14 kg.s¹
entering at 18°C using ammonia with a mass flow rate of 18 kg.s¹ and an entry
temperature and pressure of -12°C and 650 kPa, absolute, respectively. The heat
exchanger is to use the ammonia in the liquid form, so no evaporation can be
allowed. At 620 kPa, absolute pressure, ammonia evaporates at 10.5°C. The overall
heat transfer coefficient of the heat exchanger is 568 W.m2 and the heat transfer
surface area is 75 m². Determine the outlet temperatures of the hot and cold
streams. Identify whether the heat exchanger, operating under the conditions
shown, satisfies the rec irement that the ammonia remains liquid throughout the
process.
Sources for any researched material properties must be properly referenced
I need the solution in hand writing
he shell fluid,ethylene glycol, enters at 120oC and leaves at 60oCwitha flow rate of 4000 kg/h. Water flows in the tubes, entering at 35oCand leaving at85oC. The overall heat-transfer coefficient for this arrangement is 900W/m2·oC.The exchanger is a shell tube with two shell passes and two tube passes.Calculate the following: a) The water exit temperature if flow rate of glycol to the exchanger is reduced in half with the entrance temperatures of both fluids remaining the same and by how much is the heat-transfer rate reduced?; b) The percentage reduction of heat transfer if water-flow rate is reduced by 25percent,while the gas flowrate is maintained constant along with the fluid inlet temperatures. Assume that the overall heat-transfer coefficient remains the same; andc) The flow rate of water required andthe area of the heat exchanger;
Chapter 11 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 11 - In a fire-tube boiler, hot products of combustion...Ch. 11 - A shell-and-tube heat exchanger is to heat an...Ch. 11 - A steel tube (k=50W/mK) of inner and outer...Ch. 11 - A heat recovery device involves transferring...Ch. 11 - A novel design for a condenser consists of a tube...Ch. 11 - The condenser of a steam power plant...Ch. 11 - Thin-walled aluminum tubes of diameter D = 10mmare...Ch. 11 - A tinned-tube, cross-how heat exchanger is to use...Ch. 11 - Water at a rate of 45,500kg/h is heated from 80...Ch. 11 - A novel heat exchanger concept consists of a...
Ch. 11 - Prob. 11.12PCh. 11 - A process fluid having a specific heat of...Ch. 11 - A shell-and-tube exchanger (two shells, four tube...Ch. 11 - Consider the heat exchanger of Problem 11.14....Ch. 11 - The hot and cold inlet temperatures to a...Ch. 11 - A concentric tube heat exchanger of length L = 2 m...Ch. 11 - A counterflow, concentric tube heat exchanger is...Ch. 11 - Consider a concentric tube heat exchanger with an...Ch. 11 - A shell-and-tube heat exchanger must be designed...Ch. 11 - A concentric tube heat exchanger for cooling...Ch. 11 - A counterflow, concentric tube heat exchanger used...Ch. 11 - An automobile radiator may be viewed as a...Ch. 11 - Hot air for a large-scale drying operation is to...Ch. 11 - In a dairy operation, milk at a flow rate of 250...Ch. 11 - The compartment heater of an automobile...Ch. 11 - A counterflow, twin-tube heat exchanger is made...Ch. 11 - Consider a coupled shell-in-tube heat exchange...Ch. 11 - For health reasons, public spaces require the...Ch. 11 - A shell-and-tube heat exchanger (1 shell pass, 2...Ch. 11 - Saturated water vapor leaves a steam turbine at a...Ch. 11 - The human brain is especially sensitive to...Ch. 11 - Prob. 11.47PCh. 11 - A plate-tin heat exchanger is used to condense a...Ch. 11 - In a supercomputer, signal propagation delays...Ch. 11 - Untapped geothermal sites in the United States...Ch. 11 - A shell-and-tube heat exchanger consists of 135...Ch. 11 - An ocean thermal energy conversion system is...Ch. 11 - Prob. 11.55PCh. 11 - Prob. 11.56PCh. 11 - The chief engineer at a university that is...Ch. 11 - A shell-and-tube heat exchanger with one shell...Ch. 11 - Prob. 11.59PCh. 11 - Prob. 11.60PCh. 11 - Prob. 11.61PCh. 11 - Prob. 11.62PCh. 11 - A recuperator is a heat exchanger that heats air...Ch. 11 - Prob. 11.64PCh. 11 - Prob. 11.65PCh. 11 - A cross-flow heat exchanger consists of a bundle...Ch. 11 - Exhaust gas from a furnace is used to preheat the...Ch. 11 - Prob. 11.68PCh. 11 - A liquefied natural gas (LNG) regasification...Ch. 11 - Prob. 11.70PCh. 11 - A shell-and-tube heat exchanger consisting of...Ch. 11 - Prob. 11.73PCh. 11 - The power needed to overcome wind and friction...Ch. 11 - Prob. 11.75PCh. 11 - Consider a Rankine cycle with saturated steam...Ch. 11 - Consider the Rankine cycle of Problem 11.77,...Ch. 11 - Prob. 11.79PCh. 11 - Prob. 11.80PCh. 11 - Hot exhaust gases are used in a...Ch. 11 - Prob. 11.84PCh. 11 - Prob. 11.90PCh. 11 - Prob. 11S.1PCh. 11 - Prob. 11S.2PCh. 11 - Prob. 11S.3PCh. 11 - Solve Problem 11.15 using the LMTD method.Ch. 11 - Prob. 11S.5PCh. 11 - Prob. 11S.6PCh. 11 - Prob. 11S.8PCh. 11 - Prob. 11S.10PCh. 11 - Prob. 11S.11PCh. 11 - A cooling coil consists of a bank of aluminum...Ch. 11 - Prob. 11S.17P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Water flowing in a long, aluminum lube is to be heated by air flowing perpendicular to the exterior of the tube. The ID of the tube is 1.85 cm, and its OD is 2.3 cm. The mass flow rate of the water through the tube is 0.65kg/s, and the temperature of the water in the lube averages 30C. The free-stream velocity and ambient temperature of the air are 10m/sand120C, respectively. Estimate the overall heat transfer coefficient for the heat exchanger using appropriate correlations from previous chapters. State all your assumptions.arrow_forward10.1 In a heat exchanger, as shown in the accompanying figure, air flows over brass tubes of 1.8-cm 1D and 2.1-cm OD containing steam. The convection heat transfer coefficients on the air and steam sides of the tubes are , respectively. Calculate the overall heal transfer coefficient for the heal exchanger (a) based on the inner tube area and (b) based on the outer tube area.arrow_forwardWhat is the main difference between a copper and a cupronickel coaxial heat exchanger, and where is each used?arrow_forward
- An oil cooler is used to cool lubricating oil from 70oC to 40oC. The cooling water enters the heat exchanger at 15oC and leaves at 25oC. The specific heat capacities of the oil and water are 2000 and 4200 J/Kg.K respectively, and the oil flow rate is 4 Kg/s. Calculate the water flow rate required. Calculate the true mean temperature difference for (two-shell-pass / four-tube-pass) and (one-shell-pass / two-tube-pass) heat exchangers respectively. Find the effectiveness of the heat exchangers.arrow_forward1. A double-pipe parallel-flow heat exchanger is used to heat cold tap water with hot water. Hot water (Cp = 4.25 kJ/kg. K) Enters the tube at 85°C at a rate of 1.4 kg/s and leaves at 50 °C The heat exchanger is not well insulated, and it is estimated that 3 percent of the heat given up by the hot fluid is lost from the heat exchanger. If the overall heat transfer coefficient and the surface area of the heat exchanger are 1150 W/m2K and 4 m2, respectively, determine the rate of heat transfer to the cold water and the log mean temperature difference for this heat exchanger.arrow_forwardin a 10-m long center-current flow tubular heat exchanger, a liquid food, flowing in the inner pipe (inside diameter 5 cm), is heated from 4 to 60 C for pasteurization. In the outer tube (diameter 10 cm), hot water enters at 95 C and exits at 80 C. A) If the mass flow rate of the hot water is 5 kg/s, what is the flow rate of the pasteurized product? The specific heat of the water is 4.2 kJ/(kg C), specific heat of product is 3.8 kJ/(kg C) B) what is the log mean temperature difference C) What is the overall heat transfer coefficient for the heat exchanger based on the outside surface?arrow_forward
- Heat Exc.arrow_forwardHeat Excarrow_forward20,000 lb/hr of air is to be cooled from 150°f to 100°f by water flowing in a shell-and-tube heat exchanger. cooling water is available at 70°f and should leave the exchanger at 95°f. available to do this cooling assignment is a one-shell pass, two-tube pass exchanged consisting of fifty 1-in OD 18 BWG copper tubes, each 10 ft long. the tubes are arranged inside a 10-in shell on a staggered 1-1/4- inch triangular pitch with baffles spaced every 6 in. is this exchanger satisfactory?arrow_forward
- 1) For a concentric counter-flow heat exchanger, hot oil is coming in the tube of the shell/tube heat exchanger and it's cooled by water that surrounds it in the shell. Calculate what is the required length of the heat exchanger tube in order to perform the necessary cooling. Assume there is negligible heat loss to the surroundings and negligible conductive heat resistance between the two fluids. Mass flow rate of oil = 0.17 kg/s Oil heat capacity = 2375 J/kg-ºC Oil convective heat transfer coefficient = 39.7 W/m²-°C Oil enters tube at temperature = 130 °C Oil leaves tube at temperature = 83 °C Water convective heat transfer coefficient = 2190 W/m²-°C Water enters shell at temperature 15 °C Water leaves shell at temperature = 74 °C Inner diameter = 4.5 cm Outer diameter = 6.5 cmarrow_forward(b) In a shell-and-tube heat exchanger, with one shell pass and four tube passes, water entering at 25°C and volume flowrate is being used to cool oil from 120°C. The mass flow rate of oil has recently been increased to 150 000 kg h-1. There is a total of 780 tubes of 5.0m length and 23.0mm outside diameter and 2 mm thickness. From the previous operation, the overall heat transfer coefficient of the exchanger is known to be 720 W m-2K-1. Specific heat capacity of oil is 2100 J kg-1K-1. 175. 514 m3 h-1 (i) Use the &NTU method to find the exit temperature of the oil at the new flow rate. (ii) show, by calculation, how would the outlet oil temperature change if the oil mass flowrate would again increase by 28%, based on the value stated in the question (b).arrow_forwardWhich type of heat exchangers among parallel, counter, shell and tube and cross flow heat exchangers is mostly used?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage LearningRefrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning
How Shell and Tube Heat Exchangers Work (Engineering); Author: saVRee;https://www.youtube.com/watch?v=OyQ3SaU4KKU;License: Standard Youtube License