Chemistry: Principles and Practice
3rd Edition
ISBN: 9780534420123
Author: Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 10, Problem 10.55QE
(a)
Interpretation Introduction
Interpretation:
The orbitals of central atom which form bond with the bond angle of
Concept Introduction:
Hybridization is the idea that atomic orbitals combine to form new hybridized orbitals which in turn influences molecular geometry and bonding properties. Hybridization is also an expansion of the
(b)
Interpretation Introduction
Interpretation:
The orbitals of central atom which form bond with the bond angle of
Concept Introduction:
Refer to part (a).
(c)
Interpretation Introduction
Interpretation:
The orbitals of central atom which form bond with the bond angle of
Concept Introduction:
Refer to part (a).
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Draw a Lewis electron dot diagram for each of the follow- ing molecules and ions. Formulate the hybridization for the central atom in each case and give the molecular geometry.
(a) BF3 (b) BH4- (c) PH3 (d) CS2 (e) CH3+
Which of the following molecules does not have a dipole moment?
(a) CH3Cl
(b) CH2Cl2
(c) CFCl3
(d) CHCl3
Draw a Lewis electron dot diagram for each of the following molecules and ions. Formulate the hybridization forthe central atom in each case and give the moleculargeometry.(a) BF3(b) BH4-(c) PH3(d) CS2(e) CH3
Chapter 10 Solutions
Chemistry: Principles and Practice
Ch. 10 - Prob. 10.1QECh. 10 - Prob. 10.2QECh. 10 - Prob. 10.3QECh. 10 - Prob. 10.4QECh. 10 - Prob. 10.5QECh. 10 - Prob. 10.6QECh. 10 - Prob. 10.7QECh. 10 - Prob. 10.8QECh. 10 - Prob. 10.9QECh. 10 - Prob. 10.10QE
Ch. 10 - Which atomic orbitals overlap to form the bonds in...Ch. 10 - Prob. 10.12QECh. 10 - Identify the hybrid orbitals used by boron in BCl3...Ch. 10 - Identify the hybrid orbitals used by antimony in...Ch. 10 - Prob. 10.15QECh. 10 - Prob. 10.16QECh. 10 - Prob. 10.17QECh. 10 - Prob. 10.18QECh. 10 - Prob. 10.19QECh. 10 - Prob. 10.20QECh. 10 - Compare and contrast the molecular orbital and...Ch. 10 - Describe the bonding in molecular orbital terms...Ch. 10 - Prob. 10.23QECh. 10 - Prob. 10.24QECh. 10 - Prob. 10.25QECh. 10 - Prob. 10.26QECh. 10 - Prob. 10.27QECh. 10 - Prob. 10.28QECh. 10 - Prob. 10.29QECh. 10 - Prob. 10.30QECh. 10 - Prob. 10.31QECh. 10 - Prob. 10.32QECh. 10 - Prob. 10.33QECh. 10 - Prob. 10.34QECh. 10 - Prob. 10.35QECh. 10 - Prob. 10.36QECh. 10 - Prob. 10.37QECh. 10 - Prob. 10.38QECh. 10 - Prob. 10.39QECh. 10 - Use the VSEPR model to predict the bond angles...Ch. 10 - Prob. 10.41QECh. 10 - Prob. 10.42QECh. 10 - For each of the following molecules, complete the...Ch. 10 - Prob. 10.44QECh. 10 - Prob. 10.45QECh. 10 - Prob. 10.46QECh. 10 - Indicate which molecules are polar and which are...Ch. 10 - Prob. 10.48QECh. 10 - Indicate which of the following molecules are...Ch. 10 - Prob. 10.50QECh. 10 - Prob. 10.51QECh. 10 - Prob. 10.52QECh. 10 - Prob. 10.53QECh. 10 - Prob. 10.54QECh. 10 - Prob. 10.55QECh. 10 - Prob. 10.56QECh. 10 - Prob. 10.57QECh. 10 - Prob. 10.58QECh. 10 - Prob. 10.59QECh. 10 - Prob. 10.60QECh. 10 - Prob. 10.61QECh. 10 - Prob. 10.62QECh. 10 - Prob. 10.63QECh. 10 - Prob. 10.64QECh. 10 - Prob. 10.65QECh. 10 - Prob. 10.66QECh. 10 - Prob. 10.67QECh. 10 - Prob. 10.68QECh. 10 - Prob. 10.69QECh. 10 - Prob. 10.70QECh. 10 - Prob. 10.71QECh. 10 - Prob. 10.72QECh. 10 - Identify the orbitals on each of the atoms that...Ch. 10 - Prob. 10.74QECh. 10 - Prob. 10.75QECh. 10 - How many sigma bonds and how many pi bonds are...Ch. 10 - Give the hybridization of each central atom in the...Ch. 10 - Prob. 10.78QECh. 10 - Prob. 10.79QECh. 10 - Prob. 10.80QECh. 10 - Prob. 10.81QECh. 10 - Predict the hybridization at each central atom in...Ch. 10 - Prob. 10.83QECh. 10 - Tetrafluoroethylene, C2F4, is used to produce...Ch. 10 - Prob. 10.85QECh. 10 - Prob. 10.86QECh. 10 - Prob. 10.87QECh. 10 - Prob. 10.88QECh. 10 - Prob. 10.89QECh. 10 - Prob. 10.90QECh. 10 - Prob. 10.91QECh. 10 - Prob. 10.92QECh. 10 - Prob. 10.93QECh. 10 - Prob. 10.94QECh. 10 - Prob. 10.95QECh. 10 - Prob. 10.96QECh. 10 - Prob. 10.97QECh. 10 - Prob. 10.98QECh. 10 - The molecular orbital diagram of NO shown in...Ch. 10 - The molecular orbital diagram of NO shown in...Ch. 10 - The molecular orbital diagram of NO shown in...Ch. 10 - Prob. 10.102QECh. 10 - Prob. 10.103QECh. 10 - Prob. 10.104QECh. 10 - Prob. 10.105QECh. 10 - Following are the structures of three isomers of...Ch. 10 - The ions ClF2 and ClF2+ have both been observed....Ch. 10 - Aspirin, or acetylsalicylic acid, has the formula...Ch. 10 - Aspartame is a compound that is 200 times sweeter...Ch. 10 - Prob. 10.110QECh. 10 - Prob. 10.111QECh. 10 - Calcium cyanamide, CaNCN, is used both to kill...Ch. 10 - Histidine is an essential amino acid that the body...Ch. 10 - Formamide, HC(O)NH2, is prepared at high pressures...Ch. 10 - Prob. 10.115QECh. 10 - Prob. 10.116QECh. 10 - Prob. 10.117QECh. 10 - Prob. 10.118QECh. 10 - Prob. 10.119QECh. 10 - Prob. 10.120QECh. 10 - Prob. 10.121QECh. 10 - Prob. 10.122QECh. 10 - Prob. 10.123QECh. 10 - Prob. 10.124QECh. 10 - Two compounds have the formula S2F2. Disulfur...Ch. 10 - Prob. 10.126QECh. 10 - Prob. 10.127QE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- For each of the following, indicate the hybridization of the nitrogen atom (for N3−, the central nitrogen).(a) N2F4(b) NH2−(c) NF3(d) N3−arrow_forwardPredict whether each of the following has a dipole moment. Show shifting of electron density. (a) HBr (b) AlCl3 (c) CBr4arrow_forwardFor each of the following molecules, draw the Lewis structure, predict the molecular shape using VSEPR method, and propose the orbital hybridization on the central atom of each molecule. (a) BeF2 (b) GeF2 (c) AsCl3 (d) BrCl3 (e) GeCl4 (f) SeCl4 (g) AsCls (h) BrF5 (i) SF, (j) XeF4arrow_forward
- Identify the hybridization of the central atom in each of the following molecules and ions that contain multiple bonds: (a) ClNO (N is the central atom) (b) CS2 (c) Cl2CO (C is the central atom) (d) Cl2SO (S is the central atom) (e) SO2F2 (S is the central atom) (f) XeO2F2 (Xe is the central atom) (g) ClOF2+ (Cl is the central atom)arrow_forwardFor each statement, indicate whether it is true or false. (a) The greater the orbital overlap in a bond, the weaker the bond. [b] The greater the orbital overlap in a bond, the shorter the bond. [c] To create a hybrid orbital, you could use the s orbital on one atom with a p orbital on another atom. [d] Nonbonding electron pairs cannot occupy a hybrid orbital.arrow_forwardOctocrylene is an ingredient found in topical sunscreens. It is a water-resistant molecule that helps protect skin against harmful UVA and UVB radiation. Octocrylene Please answer the following questions: (a) What is the hybridisation of each nonhydrogen atom? (b) Are there two unique configurations possible about the C=C double bond? Please explain your answer. (c) Which of the two C-C bonds indicated by the arrows would you expect to be shorte.? Please explain your answer.arrow_forward
- Estimate whether the compound will have a large, small, or zero dipole moment.(a) NH4+ (b) O3arrow_forwardButadiene, C4H6, is a planar molecule that has the followingcarbon–carbon bond lengths: (a) Predict the bond angles around each of the carbon atoms and sketch the molecule. (b) From left to right, what is the hybridization of each carbon atom in butadiene? (c) The middle C—C bond length in butadiene (1.48 Å) is a little shorter than the average C—C single bond length (1.54 Å). Does this imply that the middle C—C bond in butadiene is weaker or stronger than the average C—C single bond? (d) Based on your answer for part (c), discuss what additional aspects of bonding in butadiene might support the shorter middle C—C bond.arrow_forward7. Nitrogen is the central atom in each of the species given. (a) Draw the Lewis electron-dot structure for each of the species. + NO₂ NO₂ NO₂ (b) List the species in order of increasing bond angle. Justify your answer. (c) For NO₂ and NO₂, give the hybridization of the nitrogen atom in it. (d) Identify the only one of the species that dimerizes and explain what causes it to do so.arrow_forward
- (c) m = n = bent trigonal pyramidal tetrahedral degreesarrow_forwardButadiene, C4H6, is a planar molecule that has the followingcarbon–carbon bond lengths:(a) Predict the bond angles around each of the carbon atomsand sketch the molecule. (b) From left to right, whatis the hybridization of each carbon atom in butadiene?(c) The middle C¬C bond length in butadiene (1.48 Å) isa little shorter than the average C¬C single bond length(1.54 Å). Does this imply that the middle C¬C bond in butadieneis weaker or stronger than the average C¬C singlebond? (d) Based on your answer for part (c), discuss what additional aspects of bonding in butadiene might supportthe shorter middle C¬C bond.arrow_forwardWhen one electron is added to an oxygen molecule, a superoxide ion (Oz) is formed. The addition of two elec- trons gives a peroxide ion (Oź ). Removal of an electron from O, leads to Ož. (a) Construct the correlation diagram for Oz. (b) Give the valence electron configuration for each of the following species: Ož, O2, 0z, 03 . (c) Give the bond order of each species. (d) Predict which species are paramagnetic. (e) Predict the order of increasing bond dissociation energy among the species.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Linear Combination of Atomic Orbitals LCAO; Author: Edmerls;https://www.youtube.com/watch?v=nq1zwrAIr4c;License: Standard YouTube License, CC-BY
Quantum Molecular Orbital Theory (PChem Lecture: LCAO and gerade ungerade orbitals); Author: Prof Melko;https://www.youtube.com/watch?v=l59CGEstSGU;License: Standard YouTube License, CC-BY