Concept explainers
(a)
Interpretation:
Lewis structure has to be completed from the skeletal structure given below and the bond angles around the central atoms in the given structure have to be predicted using the VSEPR model.
Concept Introduction:
Lewis structure is used for predicting the shape of molecules. From the steric number obtained in a Lewis structure, the molecular geometry can be predicted. VSEPR model can predict the shape of molecules considering their Lewis structure. Certain rules has to be followed in for the VSEPR model.
- The molecule will have a shape where there is minimal electrostatic repulsion between the valence‑shell electron pairs.
- The forces of repulsion between two lone pairs of electrons will be higher than the repulsion between lone pair and bond pair of electrons. This in turn will be higher than the bond pair‑bond pair of electrons.
(a)
Explanation of Solution
Skeletal structure for the molecule given is shown;
The Lewis structure can be drawn considering the valence electrons in the molecule. Total number of valence electrons is calculated as shown below;
Eighteen electrons are used up in the skeletal structure. One electron pair is added to the terminal carbon atom each. Thus the Lewis structure can be drawn as follows;
Bond Angles:
Central atoms present in the above structure are four carbon atoms. The bond angles can be predicted using the steric number.
Steric number for carbon atom C-1:
The number of lone pair of electrons on carbon atom is zero while the number of atoms that are bonded to carbon is three. Therefore, steric number can be calculated as shown below;
As the steric number is three, the arrangement is trigonal planar and the bond angle will be
Steric number for carbon atom C-2:
The number of lone pair of electrons on carbon atom is zero while the number of atoms that are bonded to carbon is three. Therefore, steric number can be calculated as shown below;
As the steric number is three, the arrangement is trigonal planar and the bond angle will be
Steric number for carbon atom C-3:
The number of lone pair of electrons on carbon atom is zero while the number of atoms that are bonded to carbon is three. Therefore, steric number can be calculated as shown below;
As the steric number is three, the arrangement is trigonal planar and the bond angle will be
Steric number for carbon atom C-4:
The number of lone pair of electrons on carbon atom is zero while the number of atoms that are bonded to carbon is three. Therefore, steric number can be calculated as shown below;
As the steric number is three, the arrangement is trigonal planar and the bond angle will be
(b)
Interpretation:
Lewis structure has to be completed from the skeletal structure given below and the bond angles around the central atoms in the given structure have to be predicted using the VSEPR model.
Concept Introduction:
Refer part (a).
(b)
Explanation of Solution
Skeletal structure for the molecule given is shown;
The Lewis structure can be drawn considering the valence electrons in the molecule. Total number of valence electrons is calculated as shown below;
Twelve electrons are used up in the skeletal structure. Two carbon atoms are added with a lone pair of electrons. Thus the Lewis structure can be drawn as follows;
Bond Angles:
Central atoms present in the above structure are three carbon atoms. The bond angles can be predicted using the steric number.
Steric number for carbon atom C-1:
The number of lone pair of electrons on carbon atom is zero while the number of atoms that are bonded to carbon is two. Therefore, steric number can be calculated as shown below;
As the steric number is two, the arrangement is linear and the bond angle will be
Steric number for carbon atom C-2:
The number of lone pair of electrons on carbon atom is zero while the number of atoms that are bonded to carbon is two. Therefore, steric number can be calculated as shown below;
As the steric number is two, the arrangement is linear and the bond angle will be
Steric number for carbon atom C-3:
The number of lone pair of electrons on carbon atom is zero while the number of atoms that are bonded to carbon is four. Therefore, steric number can be calculated as shown below;
As the steric number is four, the arrangement is tetrahedral and the bond angle will be
(c)
Interpretation:
Lewis structure has to be completed from the skeletal structure given below and the bond angles around the central atoms in the given structure have to be predicted using the VSEPR model.
Concept Introduction:
Refer part (a).
(c)
Explanation of Solution
Skeletal structure for the molecule given is shown;
The Lewis structure can be drawn considering the valence electrons in the molecule. Total number of valence electrons is calculated as shown below;
Six electrons are used up in the skeletal structure. Three lone pair of electrons are placed on the chlorine atom each and a lone pair of electron is placed over the phosphorus atom. Thus the Lewis structure can be drawn as follows;
Bond Angles:
Central atom present in the above structure is a phosphorus. The bond angles can be predicted using the steric number.
Steric number for phosphorus:
The number of lone pair of electrons on phosphorus atom is one while the number of atoms that are bonded to phosphorus is three. Therefore, steric number can be calculated as shown below;
As the steric number is four, the arrangement is tetrahedral and the bond angle will be
Want to see more full solutions like this?
Chapter 10 Solutions
Chemistry: Principles and Practice
- Methylcyanoacrylate is the active ingredient in super glues. Its Lewis structure is (a) Give values for the three bond angles indicated. (b) Indicate the most polar bond in the molecule. (c) Circle the shortest carbon-oxygen bond. (d) Circle the shortest carbon-carbon bond.arrow_forwardTwo different molecules have the formula C2H6O. One of the molecules has the oxygen atom bonded to both carbon atoms. The other molecule has the oxygen atom bonded to only one carbon atom while both carbon atoms are bonded to each other. Write Lewis structures for both of these compounds.arrow_forwardFormamide, HC(O)NH2, is prepared at high pressures from carbon monoxide and ammonia, and serves as an industrial solvent (the parentheses around the O indicate that it is bonded only to the carbon atom and that the carbon atom is also bonded to the H and the N atoms). Two resonance forms (one with formal charges) can be written for formamide. Write both resonance structures, and predict the bond angles about the carbon and nitrogen atoms for each resonance form. Are they the same? Describe how the experimental determination of the HNH bond angle could be used to indicate which resonance form is more important.arrow_forward
- A compound with a molar mass of about 28 g/mol contains 85.7% carbon and 14.3% hydrogen by mass. Write the Lewis structure for a molecule of the compound.arrow_forwardThe molecular ion S3N3 has the cyclic structure All SN bonds are equivalent. (a) Give six equivalent resonance hybrid Lewis diagrams for this molecular ion. (b) Compute the formal charges on all atoms in the molecular ion in each of the six Lewis diagrams. (c) Determine the charge on each atom in the polyatomic ion, assuming that the true distribution of electrons is the average of the six Lewis diagrams arrived at in parts (a) and (b). (d) An advanced calculation suggests that the actual charge resident on each N atom is 0.375 and on each S atom is +0.041 . Show that this result is consistent with the overall +1 charge on the molecular ion.arrow_forwardPlease don't provide handwriting solutionarrow_forward
- - Draw Lewis structures for each of the following. Give the total number of valence electrons, select from the lists the number of Regions of Electron Density (REDs) around the central atom, the molecular shape, and the bond angles. - Do not put covalent bonds between metals and nonmetals. - Put brackets around anions to show both charge and quantity REDS 0, no central atom 2 3 4 Shapes tetrahedral pyramidal bent trigonal planar linear diatomic monatomic ions Bond Angles 109.5° 120° 180° none, no central atom 9. Na3P valence e = REDs = shape= bond angles = 10. AI(NO3)3 valence e = REDs = shape = bond angles = sodium phosphide aluminum nitrate For nitratearrow_forward- Draw Lewis structures for each of the following. Give the total number of valence electrons, select from the lists the number of Regions of Electron Density (REDs) around the central atom, the molecular shape, and the bond angles. - Do not put covalent bonds between metals and nonmetals. - Put brackets around anions to show both charge and quantity REDS 0, no central atom 2 3 4 Shapes tetrahedral pyramidal bent trigonal planar linear diatomic monatomic ions Bond Angles 109.5° 120° 180° none, no central atom 6. OCI2 valence e = REDS = shape= bond angles = oxygen dichloride 7. P2S4 valence e = REDs at each central atom = shape at each central atom = bond angles = diphosphorus tetrasulfide dicarbon tetrachloride 8. C2C14 valence e = REDs at each central atom = shape at each central atom = bond angles =arrow_forward- Draw Lewis structures for each of the following. Give the total number of valence electrons, select from the lists the number of Regions of Electron Density (REDs) around the central atom, the molecular shape, and the bond angles. - Do not put covalent bonds between metals and nonmetals. - Put brackets around anions to show both charge and quantity REDS 0, no central atom 2 3 4 Shapes tetrahedral pyramidal bent trigonal planar linear diatomic monatomic ions Bond Angles 109.5° 120° 180° none, no central atom 1. H2CCI2 valence e = REDS = shape= bond angles = 2. NC13 valence e = REDs = shape= bond angles = 3. CS2 valence e = REDS = shape= bond angles = dihydrogen carbon dichloride nitrogen trichloride carbon disulfidearrow_forward
- Draw three resonance structures for N3-. This species has its three atoms bonded sequentially in the following fashion: N-N-N. Draw your resonance structures so that the atoms in them are bonded together in this order. Select the most important resonance structure for this species based on the formal charges on the atoms of the three resonance structures you have drawn. Now select the statement from the multiple choices which is true about this most important resonance structure.In the most important resonance structure of N3- : a) The leftmost bond (between N and N) is a single bond.b) The rightmost bond (between N and N) is a single bond.c) The formal charge on the leftmost (N) atom is -1.d) The number of nonbonding pairs (lone pairs) of electrons on the leftmost (N) atom is 4.e) The number of nonbonding (lone) pairs of electrons on the rightmost (N) atom is 4.arrow_forwardDraw three resonance structures for N3-. This species has its three atoms bonded sequentially in the following fashion: N-N-N. Draw your resonance structures so that the atoms in them are bonded together in this order. Select the most important resonance structure for this species based on the formal charges on the atoms of the three resonance structures you have drawn. Now select the statement from the multiple choices which is true about this most important resonance structure.In the most important resonance structure of N3- : a) The leftmost bond (between N and N) is a single bond. b) The rightmost bond (between N and N) is a single bond. c) The formal charge on the leftmost (N) atom is -1. d) The number of nonbonding pairs (lone pairs) of electrons on the leftmost (N) atom is 4. e) The number of nonbonding (lone) pairs of electrons on the rightmost (N) atom is 4.arrow_forwardFor the PCl3 molecule, determine the total number of valence electrons , number of bond pairs (BP) and lone pairs (LP) , electron-pair structure , molecular structure , and bond anglearrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning