Chemistry: Principles and Practice
3rd Edition
ISBN: 9780534420123
Author: Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 10, Problem 10.110QE
Interpretation Introduction
Interpretation:
The type of orbital of nitrogen atom that makes the sigma bonds has to be given and also the orbital in which the lone pair of electrons is located has to be given.
Concept Introduction:
Lewis structure is used for predicting the shape of molecules. From the steric number obtained in a Lewis structure, the molecular geometry can be predicted. VSEPR model can predict the shape of molecules considering their Lewis structure. Certain rules has to be followed in for the VSEPR model.
- The molecule will have a shape where there is minimal electrostatic repulsion between the valence‑shell electron pairs.
- The forces of repulsion between two lone pairs of electrons will be higher than the repulsion between lone pair and bond pair of electrons. This in turn will be higher than the bond pair‑bond pair of electrons.
The hybridized orbitals and the steric number can be related as shown below;
Steric number | Hybridized orbital |
2 | |
3 | |
4 | |
5 |
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 10 Solutions
Chemistry: Principles and Practice
Ch. 10 - Prob. 10.1QECh. 10 - Prob. 10.2QECh. 10 - Prob. 10.3QECh. 10 - Prob. 10.4QECh. 10 - Prob. 10.5QECh. 10 - Prob. 10.6QECh. 10 - Prob. 10.7QECh. 10 - Prob. 10.8QECh. 10 - Prob. 10.9QECh. 10 - Prob. 10.10QE
Ch. 10 - Which atomic orbitals overlap to form the bonds in...Ch. 10 - Prob. 10.12QECh. 10 - Identify the hybrid orbitals used by boron in BCl3...Ch. 10 - Identify the hybrid orbitals used by antimony in...Ch. 10 - Prob. 10.15QECh. 10 - Prob. 10.16QECh. 10 - Prob. 10.17QECh. 10 - Prob. 10.18QECh. 10 - Prob. 10.19QECh. 10 - Prob. 10.20QECh. 10 - Compare and contrast the molecular orbital and...Ch. 10 - Describe the bonding in molecular orbital terms...Ch. 10 - Prob. 10.23QECh. 10 - Prob. 10.24QECh. 10 - Prob. 10.25QECh. 10 - Prob. 10.26QECh. 10 - Prob. 10.27QECh. 10 - Prob. 10.28QECh. 10 - Prob. 10.29QECh. 10 - Prob. 10.30QECh. 10 - Prob. 10.31QECh. 10 - Prob. 10.32QECh. 10 - Prob. 10.33QECh. 10 - Prob. 10.34QECh. 10 - Prob. 10.35QECh. 10 - Prob. 10.36QECh. 10 - Prob. 10.37QECh. 10 - Prob. 10.38QECh. 10 - Prob. 10.39QECh. 10 - Use the VSEPR model to predict the bond angles...Ch. 10 - Prob. 10.41QECh. 10 - Prob. 10.42QECh. 10 - For each of the following molecules, complete the...Ch. 10 - Prob. 10.44QECh. 10 - Prob. 10.45QECh. 10 - Prob. 10.46QECh. 10 - Indicate which molecules are polar and which are...Ch. 10 - Prob. 10.48QECh. 10 - Indicate which of the following molecules are...Ch. 10 - Prob. 10.50QECh. 10 - Prob. 10.51QECh. 10 - Prob. 10.52QECh. 10 - Prob. 10.53QECh. 10 - Prob. 10.54QECh. 10 - Prob. 10.55QECh. 10 - Prob. 10.56QECh. 10 - Prob. 10.57QECh. 10 - Prob. 10.58QECh. 10 - Prob. 10.59QECh. 10 - Prob. 10.60QECh. 10 - Prob. 10.61QECh. 10 - Prob. 10.62QECh. 10 - Prob. 10.63QECh. 10 - Prob. 10.64QECh. 10 - Prob. 10.65QECh. 10 - Prob. 10.66QECh. 10 - Prob. 10.67QECh. 10 - Prob. 10.68QECh. 10 - Prob. 10.69QECh. 10 - Prob. 10.70QECh. 10 - Prob. 10.71QECh. 10 - Prob. 10.72QECh. 10 - Identify the orbitals on each of the atoms that...Ch. 10 - Prob. 10.74QECh. 10 - Prob. 10.75QECh. 10 - How many sigma bonds and how many pi bonds are...Ch. 10 - Give the hybridization of each central atom in the...Ch. 10 - Prob. 10.78QECh. 10 - Prob. 10.79QECh. 10 - Prob. 10.80QECh. 10 - Prob. 10.81QECh. 10 - Predict the hybridization at each central atom in...Ch. 10 - Prob. 10.83QECh. 10 - Tetrafluoroethylene, C2F4, is used to produce...Ch. 10 - Prob. 10.85QECh. 10 - Prob. 10.86QECh. 10 - Prob. 10.87QECh. 10 - Prob. 10.88QECh. 10 - Prob. 10.89QECh. 10 - Prob. 10.90QECh. 10 - Prob. 10.91QECh. 10 - Prob. 10.92QECh. 10 - Prob. 10.93QECh. 10 - Prob. 10.94QECh. 10 - Prob. 10.95QECh. 10 - Prob. 10.96QECh. 10 - Prob. 10.97QECh. 10 - Prob. 10.98QECh. 10 - The molecular orbital diagram of NO shown in...Ch. 10 - The molecular orbital diagram of NO shown in...Ch. 10 - The molecular orbital diagram of NO shown in...Ch. 10 - Prob. 10.102QECh. 10 - Prob. 10.103QECh. 10 - Prob. 10.104QECh. 10 - Prob. 10.105QECh. 10 - Following are the structures of three isomers of...Ch. 10 - The ions ClF2 and ClF2+ have both been observed....Ch. 10 - Aspirin, or acetylsalicylic acid, has the formula...Ch. 10 - Aspartame is a compound that is 200 times sweeter...Ch. 10 - Prob. 10.110QECh. 10 - Prob. 10.111QECh. 10 - Calcium cyanamide, CaNCN, is used both to kill...Ch. 10 - Histidine is an essential amino acid that the body...Ch. 10 - Formamide, HC(O)NH2, is prepared at high pressures...Ch. 10 - Prob. 10.115QECh. 10 - Prob. 10.116QECh. 10 - Prob. 10.117QECh. 10 - Prob. 10.118QECh. 10 - Prob. 10.119QECh. 10 - Prob. 10.120QECh. 10 - Prob. 10.121QECh. 10 - Prob. 10.122QECh. 10 - Prob. 10.123QECh. 10 - Prob. 10.124QECh. 10 - Two compounds have the formula S2F2. Disulfur...Ch. 10 - Prob. 10.126QECh. 10 - Prob. 10.127QE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Aspirin, or acetylsalicylic acid, has the formula C9H8O4 and the skeleton structure (a) Complete the Lewis structure and give the number of bonds and bonds in aspirin. (b) What is the hybridization about the CO2H carbon atom (colored blue)? (c) What is the hybridization about the carbon atom in the benzene-like ring that is bonded to an oxygen atom (colored red)? Also, what is the hybridization of the oxygen atom bonded to this carbon atom?arrow_forwardIt is possible to write a simple Lewis structure for the SO42- ion, involving only single bonds, which follows the octet rule. However, Linus Pauling and others have suggested an alternative structure, involving double bonds, in which the sulfur atom is surrounded by six electron pairs. (a) Draw the two Lewis structures. (b) What geometries are predicted for the two structures? (c) What is the hybridization of sulfur in each case? (d) What are the formal charges of the atoms in the two structures?arrow_forwardGamma hydroxybutyric acid, GHB, infamous as a date rape drug, is used illicitly because of its effects on the nervous system. The condensed molecular formula for GHB is HO(CH2)3COOH. (a) Write the Lewis structure for GHB. (b) Identify the hybridization of the carbon atom in the CH2 groups and of the terminal carbon. (c) Is hydrogen bonding possible in GHB? If so, write Lewis structures to illustrate the hydrogen bonding. (d) Which carbon atoms are involved in sigma bonds? In pi bonds? (e) Which oxygen atom is involved in sigma bonds? In pi bonds?arrow_forward
- Use the VSEPR model to predict the bond angles around each central atom in the following Lewis structures (benzene rings are frequently pictured as hexagons, without the letter for the carbon atom at each vertex). Note that the drawings do not necessarily depict the bond angles correctly.arrow_forwardFormamide, HC(O)NH2, is prepared at high pressures from carbon monoxide and ammonia, and serves as an industrial solvent (the parentheses around the O indicate that it is bonded only to the carbon atom and that the carbon atom is also bonded to the H and the N atoms). Two resonance forms (one with formal charges) can be written for formamide. Write both resonance structures, and predict the bond angles about the carbon and nitrogen atoms for each resonance form. Are they the same? Describe how the experimental determination of the HNH bond angle could be used to indicate which resonance form is more important.arrow_forwardIdentify the orbitals on each of the atoms that form the bonds in H3CCN. How many bonds and bonds form?arrow_forward
- In each of the following molecules, a central atom is surrounded by a total of three atoms or unshared electron pairs: SnCl2, BCl3, SO2. In which of these molecules would you expect the bond angle to be less than 120? Explain your reasoning.arrow_forwardIndicate which molecules are polar and which are nonpolar. (a) SeO2 (b) N2O (N is the central atom) (c) SCl4arrow_forwardThe sulfamate ion, H2NSO3, can be thought of as having been formed from the amide ion, NH2, and sulphur trioxide, SO3. (a) What are the electron-pair and molecular geometries or the amide ion and or SO3? What are the hybridizations of the N and S atoms, respectively? (b) Sketch a structure for the sulfamate ion, and estimate the bond angles. (c) What changes in hybridization do you expect for N and S in the course of the reaction NH2 + SO3 H2NSO3? (d) Is SO3 the donor of an electron pair or the acceptor of an electron pair in the reaction with amide ion? Does the electrostatic potential map shown below confirm your prediction?arrow_forward
- The structure of amphetamine, a stimulant, is shown below. (Replacing one H atom on the NH2, or amino, group with CH3 gives methamphetamine a particularly dangerous drug commonly known as speed.) (a) What are the hybrid orbitals used by the C atoms of the C6 ring. by the C atoms of the side chain, and by the N atom? (b) Give approximate values for the bond angles A, B, and C. (c) How many bonds and bonds are in the molerule? (d) Is the molecule polar or nonpolar? (e) Amphetamine reacts readily with a proton (H+) in aqueous solution. Where does this proton attach to the molecule? Explain how the electrostatic potential map predicts this site of protonation.arrow_forwardTwo compounds have the molecular formula N3H3. One of the compounds, triazene, contains an NN bond; the other compound, triaziridene, does not. (a) Write the correct Lewis structures for each compound. (b) Approximate the bond angle between the three nitrogen atoms in each compound.arrow_forward2. Which of the following species has the largest C—N bond order? CN− OCN− CH3NH2 N(CH3)3arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Stoichiometry - Chemistry for Massive Creatures: Crash Course Chemistry #6; Author: Crash Course;https://www.youtube.com/watch?v=UL1jmJaUkaQ;License: Standard YouTube License, CC-BY
Bonding (Ionic, Covalent & Metallic) - GCSE Chemistry; Author: Science Shorts;https://www.youtube.com/watch?v=p9MA6Od-zBA;License: Standard YouTube License, CC-BY
General Chemistry 1A. Lecture 12. Two Theories of Bonding.; Author: UCI Open;https://www.youtube.com/watch?v=dLTlL9Z1bh0;License: CC-BY