
(a)
Interpretation:
The composition of the solid phase and the liquid phase in mol% and wt% are to be calculated for
Concept Introduction:
On the temperature-composition graph of a ceramic, the curve above which the ceramic exist in the liquid phase is the liquidus curve. The temperature at this curve is the maximum temperature at which the crystals in the ceramic can coexist with its melt in the
Solidus curve is the locus of the temperature on the temperature composition graph of a ceramic, beyond which the ceramic is completely in solid phase.
Between the solidus and liquidus curve, the ceramic exits in a slurry form in which there is both crystals as well as ceramic melt.
Solidus temperature is always less than or equal to the liquidus temperature.
The formula to calculate the wt% from the mol% for a ceramic containing phases
Here,

Answer to Problem 10.53P
Composition of the liquid phase in mol% is
Composition of the liquid phase in wt% is
Composition of the solid phase in mol% is
Composition of the solid phase in wt% is
Explanation of Solution
The phase diagram for NiO-MgO is given as:
Now, draw a straight line from temperature
Here, point 'a' represents
Molecular weight of NiO and MgO are
Use equation (1) to convert mol% to wt% for liquid phase as:
Again, use equation (1) to convert mol% to wt% for solid phase as:
(b)
Interpretation:
The amount of each phase present in
Concept Introduction:
A matter can exist in different physical forms such as sold, liquid, gas, and plasma. These distinct physical forms are known as a Phase.
A phase has uniform physical and chemical properties and is bounded by a surface due to which two phases can be
The formula to calculate the wt% from the mol% for a ceramic containing phases
Here,
Amount of each phase in mol% is calculated using lever rule. At a particular temperature and ceramic composition, a tie line is drawn on the phase diagram of the ceramic between the solidus and liquidus curve. Then the portion of the lever opposite to the phase whose amount is to be calculated is considered in the formula used as:

Answer to Problem 10.53P
Amount of liquid phase in mol% is
Amount of liquid phase in wt% is
Amount of solid phase in mol% is
Amount of solid phase in wt% is
Explanation of Solution
The phase diagram for NiO-MgO is given as:
Now, draw a straight line from temperature
Here, point 'a' represents
To calculate amount of liquid phase, lever 'ac' will be used and to calculate amount of solid phase, lever 'ba' will be used. Use equation (2) to calculate the amount of each phase as:
To calculate the amount of liquid and solid phases in wt%, first convert the original mol% of MgO in wt% using equation (1) and molecular weights of NiO and MgO as:
To apply the lever rule, use the corresponding wt% for the liquid and solid phases as calculated in part (a) as:
Apply lever rule as:
(c)
Interpretation:
The amount of each phase is to be calculated in vol%.
Concept Introduction:
The formula to convert wt% to vol% using density

Answer to Problem 10.53P
The amount of liquid phase in vol% is
The amount of solid phase in vol% is
Explanation of Solution
Given information:
A ceramic containing
From part (b), the amount of liquid and solid phases in wt% is calculated as:
Use equation (3) along with the given densities of the phases to calculate the vol% as:
Want to see more full solutions like this?
Chapter 10 Solutions
Essentials Of Materials Science And Engineering
- Sketch the Energy Line and the Hydraulic Grade Line through the Venturi meter. Label the contribution of each term from bernoulli equationarrow_forward2. Design a storage and distribution system for the town of Waffle. The requirements are that fire protection shall be provided, the minimum water pressure at the top of the apartments is to be 240 kPa and the maximum system pressure is to be 550 kPa. The following assumptions may be used: Each of the four apartment buildings is occupied by 50 residents. Each apartment building is four stories high. Each story is 3 meters high. Each house is occupied by three residents. Average daily demand for the village is 500 Lpcd and the peak hourly demand factor is 6.2. Needed fire flow for the houses is 230 m3/h. and for apartment building is 500 m3/h, with 2 h duration. System pressure is to be provided from the elevated storage tank. Minor pressure losses in buildings may be ignored. The distribution system will not contain any loops. Assume that emergency supply (ES), fire department supply (FDS) or off peak pumping are not provided (they are all equal to zero). Provide the following…arrow_forward3-1) Similar to Lathi & Ding prob. 3.1-1. Use direct integration to find the Fourier transforms of the signals shown below. a) g₁(t) = II(t − 2) + 2 exp (−3|t|) b) g(t) = d(t+2)+3e¯u (t − 2)arrow_forward
- 3-2) Lathi & Ding prob. 3.1-5. From the definition in eq. 3.1b, find the inverse Fourier transforms of the spectra in the figure below. G(f) COS лf 10 (a) G(f) 1 -B B (b)arrow_forwardFundamentals of Energy Systems HW 4 Q2arrow_forwardSuppose your computer is responding very slowly to information requests from the Internet. You observe that your network gateway shows high levels of network activity even though you have closed your e-mail client, Web browser, and all other programs that access the Internet. What types of malwares could cause such symptoms? What steps can you take to check whether malware has gained access to your system? What tools can you use at each step? If you identify malware, what ways might it have entered your system? How can you restore your PC to safe operation, including the special software tools you may use?arrow_forward
- 1. The city of Ten Sleep proposes to use Crater Lake for its water supply. Water quality analysis results revealed no detectable Giardia, viruses, or Cryptosporidium in the source water (Giardia cysts <1/100 L; Viruses <1/100 L; Cryptosporidium oocysts <0.075/L). Design a disinfection system to treat 3,500 m³/d by direct filtration and chlorine dioxide (CIO2) will be used as a primary disinfectant. The filtered water has a pH of 7.5 and a temperature of 5°C. Provide the following information for your design: • Determine the total removal/inactivation required for disinfection for each pathogen group • Determine the required CT value to achieve the required inactivation for the design conditions (pH, temperature)arrow_forwardFundamentals of Energy Systems HW 4 Q3arrow_forwardFundamentals of Energy Systems HW 4 Q5arrow_forward
- R languagearrow_forwardUsing R languagearrow_forwardCompare the security services provided by a digital signature (DS) with those of a message authentication code (MAC). Assume that Oscar can observe all messages sent between Rina and Naseem. Oscar has no knowledge of any keys but the public one, in the case of DS. State whether DS and MAC protect against each attack and, if they do, how. The value auth(x) is computed with a DS or a MAC algorithm. In each scenario, assume the message M = x#####auth(x). (Message integrity) Rina has the textual data x = “Transfer $1000 to Mark” to send to Naseem. To ensure the integrity of the data, Rina generates auth(x), forms a message M, and then sends M in cleartext to Naseem. Oscar intercepts the message and replaces “Mark” with “Oscar.” Will Naseem detect this in the case of either DS or MAC? If yes, how will Naseem detect it? If not, why? (Replay) Rina has the textual data x = “Transfer $1000 to Mark” to send to Naseem. To ensure the integrity of the data, Rina generates auth(x), forms a message…arrow_forward
- MATLAB: An Introduction with ApplicationsEngineeringISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncEssentials Of Materials Science And EngineeringEngineeringISBN:9781337385497Author:WRIGHT, Wendelin J.Publisher:Cengage,Industrial Motor ControlEngineeringISBN:9781133691808Author:Stephen HermanPublisher:Cengage Learning
- Basics Of Engineering EconomyEngineeringISBN:9780073376356Author:Leland Blank, Anthony TarquinPublisher:MCGRAW-HILL HIGHER EDUCATIONStructural Steel Design (6th Edition)EngineeringISBN:9780134589657Author:Jack C. McCormac, Stephen F. CsernakPublisher:PEARSONFundamentals of Materials Science and Engineering...EngineeringISBN:9781119175483Author:William D. Callister Jr., David G. RethwischPublisher:WILEY





