Essentials Of Materials Science And Engineering
Essentials Of Materials Science And Engineering
4th Edition
ISBN: 9781337670845
Author: ASKELAND
Publisher: Cengage
Question
Book Icon
Chapter 10, Problem 10.29P
Interpretation Introduction

Interpretation:

The systems that would display unlimited solid solubility are to be determined based on Hume-Rothery rules.

Concept Introduction:

A property of a substance known as solute whether it is solid, liquid, or gaseous to get dissolved in the solid, liquid or gaseous solvent is known as solubility.

When two or more solid chemical substances are dissolved in each other and only one phase appears after mixing irrespective of any concentration of the solute in the solvent, there is unlimited solid solubility.

Hume-Rothery rules are the conditions which are to be satisfied to attain unlimited solid solubility. These rules are stated as:

1. The size of the atoms or the ions involved should be similar to minimize the lattice strain. This means that there should not be more than 15% difference in the atomic radius to avoid the deviations caused in the interatomic spacing.

2. The crystal structure of both the materials should be same to avoid different structure caused due to the transition from one phase to another phase at some point.

3. The difference in the valency of the ions causes the formation of compounds rather than solutions. Tus, the valence of the ions must be same.

4. The significant difference in the electronegativity (affinity for electrons) caused the compound formation rather than solutions. Therefore, the electronegativity of atoms must be approximately same.

Blurred answer
Students have asked these similar questions
3. Please see attached pic.
Q2. For the transformer shown in Fig. 1. A. Plot the winding connection for the transformer and justify your answer. (4M) B. If the transformer is adopted in 12 pulse diode rectifier, where two-series connected bridge rectifiers are used to supply a highly inductive load with 100 A. (i) Select a suitable turns ratio for the transformer (ii) Plot the line current of each winding ( secondary + primary) showing the current magnitude at each interval (iii) Use Fourier Page 1 of 3 analysis to obtain the Fourier series of all line currents then calculate the THD of the input current. (8=0° (16M) (Y) = 30° Fig. 1 P. I v I
Q2. For the transformer shown in Fig.1, A. Find the phase shift between the primary and star-connected secondary. B. If the transformer is adopted in a 12-pulse diode rectifier, where a two-series connected bridge rectifier is connected in series and supplies a highly inductive load (i) Select a suitable turns ratio for the transformer (ii) Plot the line current of each winding (secondary + primary). (iii)Using Fourier analysis to obtain the Fourier series of all line currents, then calculate the THD of the input current. (iv) Draw the output voltage of the first and second rectifiers and give the relation of the total output voltage. N2 B C Fig. 1 N3 a

Chapter 10 Solutions

Essentials Of Materials Science And Engineering

Ch. 10 - Prob. 10.11PCh. 10 - Prob. 10.12PCh. 10 - Prob. 10.13PCh. 10 - Prob. 10.14PCh. 10 - Prob. 10.15PCh. 10 - Prob. 10.16PCh. 10 - Prob. 10.17PCh. 10 - Prob. 10.18PCh. 10 - Prob. 10.19PCh. 10 - Prob. 10.20PCh. 10 - Prob. 10.21PCh. 10 - Prob. 10.22PCh. 10 - Prob. 10.23PCh. 10 - Prob. 10.24PCh. 10 - Prob. 10.25PCh. 10 - Prob. 10.26PCh. 10 - Prob. 10.27PCh. 10 - Prob. 10.28PCh. 10 - Prob. 10.29PCh. 10 - Prob. 10.30PCh. 10 - Prob. 10.31PCh. 10 - Prob. 10.32PCh. 10 - Prob. 10.33PCh. 10 - Prob. 10.34PCh. 10 - Prob. 10.35PCh. 10 - Prob. 10.36PCh. 10 - Prob. 10.37PCh. 10 - Prob. 10.38PCh. 10 - Prob. 10.39PCh. 10 - Prob. 10.40PCh. 10 - Prob. 10.41PCh. 10 - Prob. 10.42PCh. 10 - Prob. 10.43PCh. 10 - Prob. 10.44PCh. 10 - Prob. 10.45PCh. 10 - Prob. 10.46PCh. 10 - Prob. 10.47PCh. 10 - Prob. 10.48PCh. 10 - Prob. 10.49PCh. 10 - Prob. 10.50PCh. 10 - Prob. 10.51PCh. 10 - Prob. 10.52PCh. 10 - Prob. 10.53PCh. 10 - Prob. 10.54PCh. 10 - Prob. 10.55PCh. 10 - Prob. 10.56PCh. 10 - Prob. 10.57PCh. 10 - Prob. 10.58PCh. 10 - Prob. 10.59PCh. 10 - Prob. 10.60PCh. 10 - Prob. 10.61PCh. 10 - Prob. 10.62PCh. 10 - Prob. 10.63PCh. 10 - Prob. 10.64PCh. 10 - Prob. 10.65PCh. 10 - Prob. 10.66PCh. 10 - Prob. 10.67PCh. 10 - Prob. 10.68PCh. 10 - Prob. 10.69PCh. 10 - Prob. 10.70PCh. 10 - Prob. 10.71PCh. 10 - Prob. 10.72PCh. 10 - Prob. 10.73PCh. 10 - Prob. 10.74PCh. 10 - Prob. 10.75PCh. 10 - Prob. 10.76PCh. 10 - Prob. 10.77PCh. 10 - Prob. 10.78PCh. 10 - Prob. 10.79PCh. 10 - Prob. 10.80PCh. 10 - Prob. 10.81PCh. 10 - Prob. 10.82PCh. 10 - Prob. 10.83PCh. 10 - Prob. 10.84PCh. 10 - Prob. 10.85PCh. 10 - Prob. 10.86PCh. 10 - Prob. 10.87PCh. 10 - Prob. 10.88DPCh. 10 - Prob. 10.89DPCh. 10 - Prob. 10.90DPCh. 10 - Prob. 10.91DPCh. 10 - Prob. 10.92CPCh. 10 - Prob. 10.93CPCh. 10 - Prob. 10.94CPCh. 10 - Prob. K10.1KP
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
MATLAB: An Introduction with Applications
Engineering
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Text book image
Essentials Of Materials Science And Engineering
Engineering
ISBN:9781337385497
Author:WRIGHT, Wendelin J.
Publisher:Cengage,
Text book image
Industrial Motor Control
Engineering
ISBN:9781133691808
Author:Stephen Herman
Publisher:Cengage Learning
Text book image
Basics Of Engineering Economy
Engineering
ISBN:9780073376356
Author:Leland Blank, Anthony Tarquin
Publisher:MCGRAW-HILL HIGHER EDUCATION
Text book image
Structural Steel Design (6th Edition)
Engineering
ISBN:9780134589657
Author:Jack C. McCormac, Stephen F. Csernak
Publisher:PEARSON
Text book image
Fundamentals of Materials Science and Engineering...
Engineering
ISBN:9781119175483
Author:William D. Callister Jr., David G. Rethwisch
Publisher:WILEY