Essentials Of Materials Science And Engineering
Essentials Of Materials Science And Engineering
4th Edition
ISBN: 9781337670845
Author: ASKELAND
Publisher: Cengage
Question
Book Icon
Chapter 10, Problem 10.43P
Interpretation Introduction

(a)

Interpretation:

The composition range for which Tl-Pb alloy is fully liquid at 350C is to be determined.

Concept Introduction:

A phase has uniform physical and chemical properties and is bounded by a surface due to which two phases can be mechanically separated from each other.

Phase diagrams are the geometrical representation of the conditions such as temperature, pressure, composition, etc. of a system at which different phases present in the system exists and are in thermodynamic equilibrium.

These phase diagrams contain phase boundaries which are lines that mark the conditions under which multiple phases can coexist at the equilibrium. Along these lines, the transition of phase occurs.

The point where these phase boundaries intersect are the triple points. At these points, three different phases can exist simultaneously.

On the temperature-composition graph of an alloy, the curve above which the alloy exist in the liquid phase is the liquidus curve. The temperature at this curve is the maximum temperature at which the crystals in the alloy can coexist with its melt in the thermodynamic equilibrium.

Solidus curve is the locus of the temperature on the temperature composition graph of an alloy, beyond which the alloy is completely in solid phase.

Between the solidus and liquidus curve, the alloy exits in a slurry form in which there is both crystals as well as alloy melt.

Solidus temperature is always less than or equal to the liquidus temperature.

Interpretation Introduction

(b)

Interpretation:

The composition range for which Tl-Pb alloy is fully solid at 350C is to be determined.

Concept Introduction:

A phase has uniform physical and chemical properties and is bounded by a surface due to which two phases can be mechanically separated from each other.

Phase diagrams are the geometrical representation of the conditions such as temperature, pressure, composition, etc. of a system at which different phases present in the system exists and are in thermodynamic equilibrium.

These phase diagrams contain phase boundaries which are lines that mark the conditions under which multiple phases can coexist at the equilibrium. Along these lines, the transition of phase occurs.

The point where these phase boundaries intersect are the triple points. At these points, three different phases can exist simultaneously.

On the temperature-composition graph of an alloy, the curve above which the alloy exist in the liquid phase is the liquidus curve. The temperature at this curve is the maximum temperature at which the crystals in the alloy can coexist with its melt in the thermodynamic equilibrium.

Solidus curve is the locus of the temperature on the temperature composition graph of an alloy, beyond which the alloy is completely in solid phase.

Between the solidus and liquidus curve, the alloy exits in a slurry form in which there is both crystals as well as alloy melt.

Solidus temperature is always less than or equal to the liquidus temperature.

Interpretation Introduction

(c)

Interpretation:

The composition range for which Tl-Pb alloy is partly liquid and partly solid at 350C is to be determined.

Concept Introduction:

A phase has uniform physical and chemical properties and is bounded by a surface due to which two phases can be mechanically separated from each other.

Phase diagrams are the geometrical representation of the conditions such as temperature, pressure, composition, etc. of a system at which different phases present in the system exists and are in thermodynamic equilibrium.

These phase diagrams contain phase boundaries which are lines that mark the conditions under which multiple phases can coexist at the equilibrium. Along these lines, the transition of phase occurs.

The point where these phase boundaries intersect are the triple points. At these points, three different phases can exist simultaneously.

On the temperature-composition graph of an alloy, the curve above which the alloy exist in the liquid phase is the liquidus curve. The temperature at this curve is the maximum temperature at which the crystals in the alloy can coexist with its melt in the thermodynamic equilibrium.

Solidus curve is the locus of the temperature on the temperature composition graph of an alloy, beyond which the alloy is completely in solid phase.

Between the solidus and liquidus curve, the alloy exits in a slurry form in which there is both crystals as well as alloy melt.

Solidus temperature is always less than or equal to the liquidus temperature.

Blurred answer
Students have asked these similar questions
Find the Thevenin equivalent representation of the circuit given to the left of the nodes a and b. Find Vth and Rth and draw the equivalent Thevenin circuit. For Rth use a 1 volt test source as your method.
R(s) + E(s) 100(s+2)(s+6) s(s+3)(s+4) C(s)
EXAMPLE 3.6 Determine the signal pз(t)=p₁(2t-1), if the signal p₁(t) is defined as follows: P₁(t)= 1-|t| |t|≤1 {" 0, |t|>1

Chapter 10 Solutions

Essentials Of Materials Science And Engineering

Ch. 10 - Prob. 10.11PCh. 10 - Prob. 10.12PCh. 10 - Prob. 10.13PCh. 10 - Prob. 10.14PCh. 10 - Prob. 10.15PCh. 10 - Prob. 10.16PCh. 10 - Prob. 10.17PCh. 10 - Prob. 10.18PCh. 10 - Prob. 10.19PCh. 10 - Prob. 10.20PCh. 10 - Prob. 10.21PCh. 10 - Prob. 10.22PCh. 10 - Prob. 10.23PCh. 10 - Prob. 10.24PCh. 10 - Prob. 10.25PCh. 10 - Prob. 10.26PCh. 10 - Prob. 10.27PCh. 10 - Prob. 10.28PCh. 10 - Prob. 10.29PCh. 10 - Prob. 10.30PCh. 10 - Prob. 10.31PCh. 10 - Prob. 10.32PCh. 10 - Prob. 10.33PCh. 10 - Prob. 10.34PCh. 10 - Prob. 10.35PCh. 10 - Prob. 10.36PCh. 10 - Prob. 10.37PCh. 10 - Prob. 10.38PCh. 10 - Prob. 10.39PCh. 10 - Prob. 10.40PCh. 10 - Prob. 10.41PCh. 10 - Prob. 10.42PCh. 10 - Prob. 10.43PCh. 10 - Prob. 10.44PCh. 10 - Prob. 10.45PCh. 10 - Prob. 10.46PCh. 10 - Prob. 10.47PCh. 10 - Prob. 10.48PCh. 10 - Prob. 10.49PCh. 10 - Prob. 10.50PCh. 10 - Prob. 10.51PCh. 10 - Prob. 10.52PCh. 10 - Prob. 10.53PCh. 10 - Prob. 10.54PCh. 10 - Prob. 10.55PCh. 10 - Prob. 10.56PCh. 10 - Prob. 10.57PCh. 10 - Prob. 10.58PCh. 10 - Prob. 10.59PCh. 10 - Prob. 10.60PCh. 10 - Prob. 10.61PCh. 10 - Prob. 10.62PCh. 10 - Prob. 10.63PCh. 10 - Prob. 10.64PCh. 10 - Prob. 10.65PCh. 10 - Prob. 10.66PCh. 10 - Prob. 10.67PCh. 10 - Prob. 10.68PCh. 10 - Prob. 10.69PCh. 10 - Prob. 10.70PCh. 10 - Prob. 10.71PCh. 10 - Prob. 10.72PCh. 10 - Prob. 10.73PCh. 10 - Prob. 10.74PCh. 10 - Prob. 10.75PCh. 10 - Prob. 10.76PCh. 10 - Prob. 10.77PCh. 10 - Prob. 10.78PCh. 10 - Prob. 10.79PCh. 10 - Prob. 10.80PCh. 10 - Prob. 10.81PCh. 10 - Prob. 10.82PCh. 10 - Prob. 10.83PCh. 10 - Prob. 10.84PCh. 10 - Prob. 10.85PCh. 10 - Prob. 10.86PCh. 10 - Prob. 10.87PCh. 10 - Prob. 10.88DPCh. 10 - Prob. 10.89DPCh. 10 - Prob. 10.90DPCh. 10 - Prob. 10.91DPCh. 10 - Prob. 10.92CPCh. 10 - Prob. 10.93CPCh. 10 - Prob. 10.94CPCh. 10 - Prob. K10.1KP
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
MATLAB: An Introduction with Applications
Engineering
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Text book image
Essentials Of Materials Science And Engineering
Engineering
ISBN:9781337385497
Author:WRIGHT, Wendelin J.
Publisher:Cengage,
Text book image
Industrial Motor Control
Engineering
ISBN:9781133691808
Author:Stephen Herman
Publisher:Cengage Learning
Text book image
Basics Of Engineering Economy
Engineering
ISBN:9780073376356
Author:Leland Blank, Anthony Tarquin
Publisher:MCGRAW-HILL HIGHER EDUCATION
Text book image
Structural Steel Design (6th Edition)
Engineering
ISBN:9780134589657
Author:Jack C. McCormac, Stephen F. Csernak
Publisher:PEARSON
Text book image
Fundamentals of Materials Science and Engineering...
Engineering
ISBN:9781119175483
Author:William D. Callister Jr., David G. Rethwisch
Publisher:WILEY