International Edition---engineering Mechanics: Statics, 4th Edition
4th Edition
ISBN: 9781305501607
Author: Andrew Pytel And Jaan Kiusalaas
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10, Problem 10.39P
The hinge is of the type used on some automobiles, in which the door DE appears to rotate about paint H. Use a graphical construction, drawn to scale, to locate H. (Him: ABED and BCGF are parallelogram linkages.)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Strictly use graphical method and Find T2.
Do not copy from chegg their all answers are wrong.If you do I'll give thumbs down.
need urgent help
please also i need the coordinate system for each joint
thanks in advance
Plz hand written otherwise skip.... If hand written i'll upvote plz fast plzzzzzz fast plzzzz
Chapter 10 Solutions
International Edition---engineering Mechanics: Statics, 4th Edition
Ch. 10 - Determine the number of DOF for each of the...Ch. 10 - The uniform bar of weight W is held in equilibrium...Ch. 10 - Bars AB and AC of the mechanism are homogenous...Ch. 10 - The weight of each homogeneous bar of the linkage...Ch. 10 - The 1800-kg boat is suspended from two parallel...Ch. 10 - The 2.4-kg lamp, with center of gravity located at...Ch. 10 - The linkage is made of two homogenous bars of...Ch. 10 - For the frame shown, find the horizontal component...Ch. 10 - The four-bar linkage supports the homogeneous box...Ch. 10 - Prob. 10.10P
Ch. 10 - Determine the ratio P/Q of the forces that are...Ch. 10 - Find the vertical force P that will hold the...Ch. 10 - The linkage of the braking system consists of the...Ch. 10 - The automatic drilling robot must sustain a thrust...Ch. 10 - Determine the couple C for which the mechanism...Ch. 10 - The scissors jack is used to elevate the weight W....Ch. 10 - Prob. 10.17PCh. 10 - Calculate the torque C0 that must be applied to...Ch. 10 - Determine the force F and the angle a required to...Ch. 10 - Locate the instant center of rotation of bar AB...Ch. 10 - Prob. 10.21PCh. 10 - Determine the force P that will keep the mechanism...Ch. 10 - Prob. 10.23PCh. 10 - Prob. 10.24PCh. 10 - Prob. 10.25PCh. 10 - Determine the ratio P/Q for which the linkage will...Ch. 10 - Prob. 10.27PCh. 10 - Prob. 10.28PCh. 10 - If the input force to the compound lever is P = 30...Ch. 10 - Determine the roller reaction at F due to the...Ch. 10 - Prob. 10.31PCh. 10 - Prob. 10.32PCh. 10 - Prob. 10.33PCh. 10 - Prob. 10.34PCh. 10 - Prob. 10.35PCh. 10 - For the pliers shown, determine the relationship...Ch. 10 - When activated by the force P, the gripper cm a...Ch. 10 - Prob. 10.38PCh. 10 - The hinge is of the type used on some automobiles,...Ch. 10 - The spring attached to the sliding collar is...Ch. 10 - The weight W is suspended from end B of the...Ch. 10 - The uniform bar of weight W and length L = 1.8R...Ch. 10 - A slender homogeneous bar is bent into a right...Ch. 10 - The body shown is a composite of a hemisphere and...Ch. 10 - Prob. 10.45PCh. 10 - The uniform bar AB of weight W and length L is...Ch. 10 - Uniform rods of weights W1 and W2 are welded to...Ch. 10 - Prob. 10.48PCh. 10 - The semi-cylinder of radius r is placed on a...Ch. 10 - Prob. 10.50PCh. 10 - The spring attached to the homogenous bar of...Ch. 10 - The spring is connected to a rope that passes over...Ch. 10 - Find the equilibrium positions of the 30-lb...Ch. 10 - The mechanism of negligible weight supports the...Ch. 10 - Solve Prob. 10.54 assuming that A and B are...Ch. 10 - The stiffness of the ideal spring that is...Ch. 10 - Find the stable equilibrium position of the system...Ch. 10 - The uniform bar AB of weight W = kL is in...Ch. 10 - The weight of the uniform bar AB is W. The...Ch. 10 - The weightless bars AB and CE, together with the...Ch. 10 - Prob. 10.61PCh. 10 - The bar ABC is supported by three identical, ideal...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Gear A rotates CW as shown and drives the rack F through gears B, C, D, and E. What is the direction of motion of rack F that is free to move vertically only? B C A D E F Don't use chatgpt, Solve the problem in handwritten format.arrow_forwardT5arrow_forwardQ3) You have been provided with following types of kinematic links. Can Type of link Numbers Binary 8 Ternary 3 Quaternary 2 Can you form a kinematic chain by selecting suitable number of links from the available quantity as indicated in the table above? Justify your answer. Note; (please provide an answer that is based on the Mechanics of Machines 1 handout MIME 3220)arrow_forward
- The following shows the top view of the partially open doors on one side of an entertainment center cabinet. The wooden doors are hinged to each other and one door is hinged to the cabinet. There is also a ternary, metal link attached to the cabinet and door through pin joints. As spring- loaded piston-in-cylinder device attaches to the ternary link and the cabinet through pin joints. Draw a kinematic diagram of the door system and find the mobility of this mechanism. cylinder piston O cabinet link hinge door door hingearrow_forwardI want a detailed explanation of the two areas marked in red. Firstly, why + and - became in derivation all - Secondly, why did we put it above C dot and why did we delete a? I want an explanation about this derivation with a detailed explanation of its drawing, please.arrow_forwardQuestion 1 A point P(6,1,2) that is attached to a frame is subjected to the followings sequence of transformations: i. A rotation of 70° about the z-axis, ii. A translation of [4 -7 5], iii. A rotation of 50° about the y-axis. Solve for the coordinate of the point at the conclusions of these transformations.arrow_forward
- Consider that we have a 3-R robot as shown in the figure below. The lengths of the links are: 11-12-13=2. The position and posture of the tool's center point is Pt (x₁, y₁, α), the driving variables are 01, 02, 03, and the output variables are v,v,, w.. (It is in the initial position) yo 1₁ Y₁ 0₁ Y₂ 12 02 X1 -X2 V3 13 P₁ X3 a Xoarrow_forwardHand written plzzzzz...asap fast plz hand written otherwise downvote..if hand written i'll upvotearrow_forwardThe link lengths, value of theta2, and offset for some fourbar slider-crank linkages are defined inTable P4-2. The linkage configuration and terminology are shown in Figure P4-2. For row a,draw the linkage to scale and graphically find all possible solutions (both open and crossed)for angles theta3 and slider position d.arrow_forward
- Please don't provide handwritten solution.arrow_forwardAll pertinent rigid dimensions are specified for the linkage shown. Note that the ground pivot for the input link is at the origin of the coordinate system. The input angle []in is currently 170° measured from the x axis as shown. The figure is not exactly to scale, but it is reasonably close for checking purposes. (a) Calculate the value of the angle []out as shown on the figure. Use the equations developed from the loop closure method. Note that you will need to incorporate a change of coordinate axes orientation to the axes defined for the loop closure equations. (b) Calculate the absolute location of point P with respect to the coordinate axes shown. 18 30° 9° 9 P 20 50° -170° Xarrow_forwardPlease assist with this practice question 9. I don't know where to begin with this. Give details on how to do. Thank you.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
How to balance a see saw using moments example problem; Author: Engineer4Free;https://www.youtube.com/watch?v=d7tX37j-iHU;License: Standard Youtube License