International Edition---engineering Mechanics: Statics, 4th Edition
4th Edition
ISBN: 9781305501607
Author: Andrew Pytel And Jaan Kiusalaas
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 10, Problem 10.33P
To determine
The ratio of couple
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The rigid body ACD supported by a pin at C and by a cable ABD is loaded by P=130 N. Neglecting friction determine the tension in cable ABD and the reactions
at C when = 60 degrees and the length a =19 m.
NOTE: Give the answer up to THREE significant digits.
90
D
Problem 4
The block D has a weight of 400 lb. The block B has a weight of 280 lb. Find the weight of
block C and angle at the equilibrium.
B
D
30°
C
The bars shown are the same length. The spring is unstretched when alpha= 90°; the horizontal surface is smooth. For what value of a between 0 and 90° will the system remain in equilibrium?
Chapter 10 Solutions
International Edition---engineering Mechanics: Statics, 4th Edition
Ch. 10 - Determine the number of DOF for each of the...Ch. 10 - The uniform bar of weight W is held in equilibrium...Ch. 10 - Bars AB and AC of the mechanism are homogenous...Ch. 10 - The weight of each homogeneous bar of the linkage...Ch. 10 - The 1800-kg boat is suspended from two parallel...Ch. 10 - The 2.4-kg lamp, with center of gravity located at...Ch. 10 - The linkage is made of two homogenous bars of...Ch. 10 - For the frame shown, find the horizontal component...Ch. 10 - The four-bar linkage supports the homogeneous box...Ch. 10 - Prob. 10.10P
Ch. 10 - Determine the ratio P/Q of the forces that are...Ch. 10 - Find the vertical force P that will hold the...Ch. 10 - The linkage of the braking system consists of the...Ch. 10 - The automatic drilling robot must sustain a thrust...Ch. 10 - Determine the couple C for which the mechanism...Ch. 10 - The scissors jack is used to elevate the weight W....Ch. 10 - Prob. 10.17PCh. 10 - Calculate the torque C0 that must be applied to...Ch. 10 - Determine the force F and the angle a required to...Ch. 10 - Locate the instant center of rotation of bar AB...Ch. 10 - Prob. 10.21PCh. 10 - Determine the force P that will keep the mechanism...Ch. 10 - Prob. 10.23PCh. 10 - Prob. 10.24PCh. 10 - Prob. 10.25PCh. 10 - Determine the ratio P/Q for which the linkage will...Ch. 10 - Prob. 10.27PCh. 10 - Prob. 10.28PCh. 10 - If the input force to the compound lever is P = 30...Ch. 10 - Determine the roller reaction at F due to the...Ch. 10 - Prob. 10.31PCh. 10 - Prob. 10.32PCh. 10 - Prob. 10.33PCh. 10 - Prob. 10.34PCh. 10 - Prob. 10.35PCh. 10 - For the pliers shown, determine the relationship...Ch. 10 - When activated by the force P, the gripper cm a...Ch. 10 - Prob. 10.38PCh. 10 - The hinge is of the type used on some automobiles,...Ch. 10 - The spring attached to the sliding collar is...Ch. 10 - The weight W is suspended from end B of the...Ch. 10 - The uniform bar of weight W and length L = 1.8R...Ch. 10 - A slender homogeneous bar is bent into a right...Ch. 10 - The body shown is a composite of a hemisphere and...Ch. 10 - Prob. 10.45PCh. 10 - The uniform bar AB of weight W and length L is...Ch. 10 - Uniform rods of weights W1 and W2 are welded to...Ch. 10 - Prob. 10.48PCh. 10 - The semi-cylinder of radius r is placed on a...Ch. 10 - Prob. 10.50PCh. 10 - The spring attached to the homogenous bar of...Ch. 10 - The spring is connected to a rope that passes over...Ch. 10 - Find the equilibrium positions of the 30-lb...Ch. 10 - The mechanism of negligible weight supports the...Ch. 10 - Solve Prob. 10.54 assuming that A and B are...Ch. 10 - The stiffness of the ideal spring that is...Ch. 10 - Find the stable equilibrium position of the system...Ch. 10 - The uniform bar AB of weight W = kL is in...Ch. 10 - The weight of the uniform bar AB is W. The...Ch. 10 - The weightless bars AB and CE, together with the...Ch. 10 - Prob. 10.61PCh. 10 - The bar ABC is supported by three identical, ideal...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The uniform bar of weight W is held in equilibrium by the couple C0. Find C0 in terms of W, L, and .arrow_forwardThe cable of mass 1.8 kg/m is attached to a rigid support at A and passes over a smooth pulley at B. If the mass M = 40 kg is attached to the free end of the cable, find the two values of H for which the cable will be in equilibrium. (Note: The smaller value of H represents stable equilibrium.)arrow_forwardDraw the FBDs for the beam ABC and the segments AB and BC. Note that the two segments are joined by a pin at B. Count the total number of unknowns and the total number of independent equilibrium equations.arrow_forward
- The weightless bars AB and CE, together with the 5-lb weight BE, form a parallelogram linkage. The ideal spring attached to D has a free length of 2 in. and a stiffness of 7.5 lb/in. Find the two equilibrium positions that are in the range 0/2, and determine their stability. Neglect the weight of slider F.arrow_forwardThe weight of the limb is W=15 lbs.The contact of foot with the ground can be modeled as a pin/hinge here. Determine the reaction force of the ground and the reaction at the knee joint and its direction/angle θ. Note: use the thee force member condition to find the angle of FK.Q4.As it’s been shown in the below figure,a person is using an exercise machine. Points A and B correspond to the shoulder and elbow joints, respectively. Relative to the person, the upper arm (AB) is extended toward the left (x-direction) and the lower arm (BC) is extended forward (z-direction). At this instant, the person is holding a handle that is connected by a cable to a suspending weight. The weight applies an upward (in the y-direction) force with magnitude F on the arm at point C. The lengths of the upper arm and lower arm are AB̅̅̅̅= 20cm and BC̅̅̅̅= 25cm, respectively, and the magnitude of the applied force is F = 400 N.Determine the components of reaction developed at the shoulder joint A When the…arrow_forwardProblem 4-Frames & Machines The gripper shown to the right has a broken torsion spring at point C which, therefore, does not contribute to the moment about point C. It is as if it isn't there. Using this information and the grip forces shown, determine the gripping force applied to the scrap at point H. Model the reaction(s) as acting parallel to the 5 lb gripping forces. 2 in. B 4 in. 5 lb 5 lb 12 in. 2 in. F E 3 in. Harrow_forward
- The figure shows two bodies connected by a rope passing through a pulley of radius R, such that the system is in equilibrium. The angle of inclination of the left plane with respect to the floor is θ and that of the right plane is ϕ. If the mass of the body on the left is m1, find the mass of the body on the right and the magnitude of the normal forces acting on both bodies.arrow_forwardA. Draw a different configuration, and make it a diagram similar to Fig. 3. Specifyeach mass and angle you’d be using.B. Determine the tensions T1 and T2 which would be created by each hangingmassC. find the unknown components of T3D.calculate the magnitude and direction of T3arrow_forwardNonearrow_forward
- Find the vertical force P that will hold the linkage in the position =40. The spring of stiffness k=3kN/m is unstretched when =0. The length of each link is L=200mm. Neglect the weights of the links.arrow_forwardDetermine the ratio P/Q of the forces that are required to maintain equilibrium of the mechanism for an arbitrary angle . Neglect the weight of the mechanism.arrow_forwardThe uniform, 20-kg bar is placed between two vertical surfaces. Assuming sufficient friction at A to support the bar, find the magnitudes of the reactions at A and B.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
Force | Free Body Diagrams | Physics | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=4Bwwq1munB0;License: Standard YouTube License, CC-BY