The weightless bars AB and CE, together with the 5-lb weight BE, form a parallelogram linkage. The ideal spring attached to D has a free length of 2 in. and a stiffness of 7.5 lb/in. Find the two equilibrium positions that are in the range
The equilibrium positions.
Answer to Problem 10.60P
The system is at unstable equilibrium at 29.6o and at 53.1o the system comes in stable equilibrium.
Explanation of Solution
Given Information:
The weight of the load at BE = 5-lb
The stiffness of spring k = 7.5 lb/in
The following figure is given:
Calculation:
Consider the following figure:
To calculate the angle for the equilibrium position, let us calculate the potential energy of the system. The total potential energy of the system consists of potential energy of the weight (Vg) and the potential energy of the springs (Ve)
The total potential energy =
Putting the value of Yg and s in equation (1),
The potential energy of the system comes out to be
Now, let us take the first derivative of the total potential energy of the system,
Now, the principle of minimum potential energy can be used to find the value of angle
The roots of equation
Now, differentiating equation 3 again to get
Thus, system is at stable equilibrium at
Thus, system is at unstable equilibrium at
Thus, system is at stable equilibrium at
Conclusion:
Therefore, thesystem is at unstable equilibrium at 29.6o and at 53.1o the system comes in stable equilibrium.
Want to see more full solutions like this?
Chapter 10 Solutions
International Edition---engineering Mechanics: Statics, 4th Edition
- The cable of mass 1.8 kg/m is attached to a rigid support at A and passes over a smooth pulley at B. If the mass M = 40 kg is attached to the free end of the cable, find the two values of H for which the cable will be in equilibrium. (Note: The smaller value of H represents stable equilibrium.)arrow_forwardThe weight of the uniform bar AB is W. The stiffness of the ideal spring attached to B is k, and the spring is unstretched when =80. If W=kL, the bar has three equilibrium positions in the range 0, only one of which is stable. Determine the angle at the stable equilibrium position.arrow_forwardFind the stable equilibrium position of the system described in Prob. 10.56 if m = 2.06 kg.arrow_forward
- The 40-kghomogeneous disk is placed on a frictionless inclined surface and held in equilibrium by the horizontal force P and a couple C (C is not shown on the figure). Find P and C.arrow_forwardThe two uniform cylinders, each of weight W, are resting against inclined surfaces. Neglecting friction, draw the free-body diagrams for each cylinder and for the two cylinders together. Count the total number of unknowns and the total number of independent equilibrium equations.arrow_forwardThe 14-kN weight is suspended from a small pulley that is free to roll on the cable. The length of the cable ABC is 20 m. Determine the horizontal force P that would hold the pulley in equilibrium in the position x=5m.arrow_forward
- The uniform bar of weight W is held in equilibrium by the couple C0. Find C0 in terms of W, L, and .arrow_forwardThe figure shows two bodies connected by a rope passing through a pulley of radius R, such that the system is in equilibrium. The angle of inclination of the left plane with respect to the floor is θ and that of the right plane is ϕ. If the mass of the body on the left is m1, find the mass of the body on the right and the magnitude of the normal forces acting on both bodies.arrow_forwardA rear suspension system for a front wheel-drive vehicle is shown here. Spring EF is offset behind member CD. The normal force due to contact between the wheel and the road is 4200 N. Assume the weight of the wheel and suspension system components is negligible. Determine the magnitude of the member CD. Is the member in tension or compression? Determine the support reactions at A. Determine the unstretched length of the spring EF given a spring constant of 150 kN/m.arrow_forward
- The hand brake for a bicycle is shown. Portions DE and FG are free to rotate on bolt A which is screwed into the frame BC of the bicycle. The brake is actuated by a shielded cable where T1 is applied to point E and T2 is applied to point G. A spring having 40 N compressive force is placed between points E and G so that the brake stays open when it is not being used. Assume the change in the spring's force is negligible when the brake is actuated to produce the F = 100 N forces at points D and F. Determine the necessary cable forces T1 in N.arrow_forwardQ1arrow_forwardThe uniform 15-m pole has a mass of 165 kg and is supported by its smooth ends against the vertical walls and by the tension T in the vertical cable. Compute the magnitudes of the reactions at A and B.arrow_forward
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L