Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 1, Problem 1.73P
To determine
Time rate of change of plate temperature and heat loss by convection and heat loss by radiation.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Find heat transfer between the plates in kW/m2
The interior surface of a 25 cm thick wall has a temperature of 27 \deg C as shown in the figure. The outer surface is exposed to a solar radiation of 150 W/m^2 and exchanges heat by radiation and convection with the surroundings and the air that are at the same temperature of 40 \deg C. The coefficient of heat transfer by convection is 8 W/m^2* K, consider both the absorptivity (\alpha ) and emissivity (\epsi equal to 0.8. Assuming transfer of 1D heat and at steady state, determine the surface temperature outside and the heat flow by conduction in the wall in three conditions different: a) If the wall is made of brick (k=0.72 W/m*K) b) If the wall is made of wood (k=0.17 W/m*K) c) If the wall is made of rigid foam (polyurethane) (k=0.026 W/m*KMake a diagram of the corresponding thermal resistance circuit and a diagram of the variation of temperatures from the interior wall to the air abroad.
question from zemansky book
Chapter 1 Solutions
Introduction to Heat Transfer
Ch. 1 - The thermal conductivity of a sheet of rigid,...Ch. 1 - The heat flux that is applied to the left face of...Ch. 1 - A concrete wall, which has a surface area of 20m2...Ch. 1 - The concrete slab of a basement is 11 m long, 8 m...Ch. 1 - Consider Figure 1.3. The heat flux in the...Ch. 1 - Prob. 1.6PCh. 1 - The inner and outer surface temperatures of a...Ch. 1 - A thermodynamic analysis of a proposed Brayton...Ch. 1 - A glass window of width W=1m and height H=2m is 5...Ch. 1 - Prob. 1.10P
Ch. 1 - The heat flux that is applied to one face of a...Ch. 1 - Prob. 1.12PCh. 1 - Prob. 1.13PCh. 1 - Prob. 1.14PCh. 1 - The 5-mm-thick bottom of a 200-mm-diameter pan may...Ch. 1 - Prob. 1.16PCh. 1 - For a boiling process such as shown in Figure...Ch. 1 - You've experienced convection cooling if you've...Ch. 1 - Prob. 1.19PCh. 1 - A wall has inner and outer surface temperatures of...Ch. 1 - An electric resistance heater is embedded in a...Ch. 1 - Prob. 1.22PCh. 1 - A transmission case measures W=0.30m on a side and...Ch. 1 - Prob. 1.24PCh. 1 - A common procedure for measuring the velocity of...Ch. 1 - Prob. 1.26PCh. 1 - Prob. 1.27PCh. 1 - Prob. 1.28PCh. 1 - Prob. 1.29PCh. 1 - Prob. 1.30PCh. 1 - Prob. 1.31PCh. 1 - Prob. 1.32PCh. 1 - Prob. 1.33PCh. 1 - Prob. 1.34PCh. 1 - An electrical resistor is connected to a battery,...Ch. 1 - Pressurized water pin=10bar,Tin=110C enters the...Ch. 1 - Consider the tube and inlet conditions of Problem...Ch. 1 - An internally reversible refrigerator has a...Ch. 1 - A household refrigerator operates with cold- and...Ch. 1 - Chips of width L=15mm on a side are mounted to a...Ch. 1 - Consider the transmission case of Problem 1.23,...Ch. 1 - One method for growing thin silicon sheets for...Ch. 1 - Heat is transferred by radiation and convection...Ch. 1 - Radioactive wastes are packed in a long,...Ch. 1 - An aluminum plate 4 mm thick is mounted in a...Ch. 1 - A blood warmer is to be used during the...Ch. 1 - Consider a carton of milk that is refrigerated at...Ch. 1 - The energy consumption associated with a home...Ch. 1 - Liquid oxygen, which hems a boiling point of 90 K...Ch. 1 - The emissivity of galvanized steel sheet, a common...Ch. 1 - Three electric resistance heaters of length...Ch. 1 - A hair dryer may be idealized as a circular duct...Ch. 1 - In one stage of an annealing process, 304...Ch. 1 - Convection ovens operate on the principle of...Ch. 1 - Annealing, an important step in semiconductor...Ch. 1 - In the thermal processing of semiconductor...Ch. 1 - A furnace for processing semiconductor materials...Ch. 1 - Single fuel cells such as the one of Example 1.5...Ch. 1 - Prob. 1.59PCh. 1 - Prob. 1.60PCh. 1 - Prob. 1.61PCh. 1 - A small sphere of reference-grade iron with a...Ch. 1 - A 50mm45mm20mm cell phone charger has a surface...Ch. 1 - A spherical, stainless steel (AISI 302) canister...Ch. 1 - Prob. 1.65PCh. 1 - Prob. 1.66PCh. 1 - A photovoltaic panel of dimension 2m4m is...Ch. 1 - Following the hot vacuum forming of a paper-pulp...Ch. 1 - Prob. 1.69PCh. 1 - Prob. 1.70PCh. 1 - Prob. 1.71PCh. 1 - The roof of a car in a parking lot absorbs a solar...Ch. 1 - Prob. 1.73PCh. 1 - Prob. 1.74PCh. 1 - Consider Problem 1.1. If the exposed cold surface...Ch. 1 - Prob. 1.76PCh. 1 - Prob. 1.77PCh. 1 - A thin electrical heating element provides a...Ch. 1 - Prob. 1.79PCh. 1 - Prob. 1.80PCh. 1 - Prob. 1.81PCh. 1 - The curing process of Example 1.9 involves...Ch. 1 - The diameter and surface emissivity of an...Ch. 1 - Bus bars proposed for use in a power transmission...Ch. 1 - A solar flux of 700W/m2 is incident on a...Ch. 1 - In considering the following problems involving...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A pipe carrying superheated steam in a basement at 10C has a surface temperature of 150C. Heat loss from the pipe occurs by radiation (=0.6) and natural convection (hc=25W/m2K). Determine the percentage of the total heat loss by these two mechanisms.arrow_forward12. The inner and outer glasses of a 2m x 2m double window are at 18 C and 6 C, respectively. If the 1 cm spac between the two glasses is filled with still air, determine the rate of heat transfer through the air layer by conduction, in pane kW.arrow_forwardFor steady state condition, determine the heat lost by inner lining through shields to the outer lining to keep the temperature of the outside surface of a hollow brick lining of a furnace at 100°C when the temperature of the inside surface of the lining is 500°C. Take the emissivity of brick lining as well as for shield as 0.87. Heat transfer to the surrounding from the outer surface takes place by radiation and convection. The heat transfer coefficient for natural convection is given by ha = 1.44 (ΔT)^0.33 W/m2-K, ta (air temperature) = 25°C. Neglect the heat transfer by conduction and convection between the brick lining.arrow_forward
- A wood stove is used to heat a single room. The stove is cylindrical in shape, with a diameter of 26 cm and a length of 52 cm, and operates at a temperature of 490°F. If the temperature of the room is 60°F, and if the emissivity is 0.844, then Calculate, the amount of radiant energy delivered to the room by the stove each second (KW) Answerarrow_forwardConsider steady heat transfer between two large parallel plates at constant temperatures T1 = 300 K and T2 = 200 K that are L = 1 cm apart, as shown below. Assuming the surface to be black, determine the rate of heat transfer between the plates per unit surface area assuming the gap between the plates is a) filled with still air with k = 0.0219 W/m°C, b) free flowing air with h = 7.5 W/m2°C, c) evacuated, d) filled with urethane insulation with k = 0.026 W/m°C, and e) filled with superinsulation that has an apparent thermal conductivity k = 0.00002 W/m°C PLEASE ANSWER LETTER D AND E, THANK YOUarrow_forwardConsider steady heat transfer between two large parallel plates at constant temperatures T1 = 300 K and T2 = 200 K that are L = 1 cm apart, as shown below. Assuming the surface to be black, determine the rate of heat transfer between the plates per unit surface area assuming the gap between the plates is a) filled with still air with k = 0.0219 W/m°C, b) free flowing air with h = 7.5 W/m2°C, c) evacuated, d) filled with urethane insulation with k = 0.026 W/m°C, and e) filled with superinsulation that has an apparent thermal conductivity k = 0.00002 W/m°Carrow_forward
- Consider a room whose door and windows are tightly closed, and whose walls are well-insulated so that heat loss or gain through the walls is negligible.arrow_forwardTwo parallel plates are sustained at 1073.15K and 573.15K which has emissivityof 0.3 and 0.5 respectively. If a polished shield made from aluminum with Є =0.05 is placed between the two parallel plates, determine the following:a) Net radiant heat exchange per square meter of the two parallel plates beforethe aluminum plate was placed between both plates b) Percentage reduction of heat transfer after the aluminum was place betweenthe platesarrow_forwardConsider the rate of heat conduction through a double-paned window that has a 1.6-m2 area and is made of two panes of 0.76-cm-thick glass separated by a 0.75-cm air gap. You can ignore the increased heat transfer in the air gap due to convection. a. Calculate the rate of heat conduction through this window, in watts, given that the inside surface temperature is 15.0°C, while the outside temperature is -10.0°C. Make the assumption that the temperature differences across the two glass planes are equal. First find these and then the temperature drop across the air gap. b. For comparison, calculate the rate of heat conduction, in watts, through a single 1.67-cm-thick window of the same area and with the same temperatures as in part (a).arrow_forward
- The car is outdoors in direct sunlight. The outside air temperature is 27 ° C. The temperature inside the car is maintained by air conditioning 22 ° C. What is the temperature of the outside surface of the car roof? The power density of solar radiation is 840 W / m2 and the absorption coefficient of the roof paint for radiation is 0.51. The heat transfer coefficient from the roof surface to the outside air is 11.6 W / (m2K), which also includes heat radiation from the surface to the environment. Radiation from the atmosphere to the car is not taken into account. The total thermal resistance of the car's roof structure is 1.0 m2K / W. The task does not look at any other part of the vehicle but only the roof. If you need an area, make a calculation per 1 m2.arrow_forwardTwo parallel discs pf 1m diameter are situated 2m part in surroundings at a temparature 20 C. The inner side of one disc has an emissivity of 0.5 and is manintained at 500 C by electric resistance heating and the outer side of the disc is well insulated. The other disc is Two parallel discs of 1m diameter are situated 2m apart in surroundings at a temperature of 20 oC. The inner side of one disc has an emissivity of 0.5 and is maintained at 500 oC by electric resistance heating and the outer side of the disc is well insulated. The other disc is open to radiation on both sides and reaches an equilibrium temperature. Calculate this equilibrium temperature and the heat flow rate from the first disc, assuming heat transfer is entirely by radiation.arrow_forwardConsider steady heat transfer between two large parallel plates at constant temperatures T1 = 300 K and T2 = 200 K that are L = 1 cm apart, as shown below. Assuming the surface to be black, determine the rate of heat transfer between the plates per unit surface area assuming the gap between the plates is a) filled with still air with k = 0.0219 W/moC, b) free-flowing air with h = 7.5 W/m2oC, c) evacuated, d) filled with urethane insulation with k = 0.026 W/moC, and e) filled with superinsulation that has an apparent thermal conductivity k = 0.00002 W/moCarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license