Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 1, Problem 1.65P
To determine
Time required to complete melt the frost.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A spherical pellet (ρ =1000 kg/m3 , c = 1000 J/(kg⋅K)) with a radius ro = 1 cm is cooled from an initial temperature of 200°C by immersion in water bath at 10°C with a convection coefficient h = 100 W/(m2 K). Evaluate the temperature in the center and on the surface of the pellet after 10 s of immersion for two cases:
(a) Thermal conductivity of the pellet k = 0.1 W/(m⋅K)
(b) Thermal conductivity of the pellet k = 5 W/(m⋅K)
Heat is generated in a sphere of radius 1 m at a rate of 1000 W/m3. The sphere is surrounded by air at 27 oC.A. Balance total energy produced by the total energy lost from the surface by convection and radiation tocalculate the surface temperature.B. Solve the heat transfer problem in the sphere and use the temperature calculated in A as the boundarycondition to determine the temperature at the center of the sphere.Assume that the sphere can be treated as a black body for calculating radiation losses.Properties The thermal conductivity is given to be k =2.5 W/m°C.σ = 5.67 × 10−8 W / (m2 x K4). Heat transfer coefficient h = 10 W/(m2 K)
The temperature of a gas stream is measured by a thermocouple whose junction can be approximated as a 1-mm-diameter sphere. Take the junction’s properties as: k of 32 W/m K, density of 8.2 kg/m^3, c of 300 J/Kg K. On its surface, the overall heat transfer coefficient is 200 W/m^2 K. Neglect any conduction loss from the sphere to other parts of the thermocouple. Create a plot of measurement error as a function of time for the thermocouple.
Chapter 1 Solutions
Introduction to Heat Transfer
Ch. 1 - The thermal conductivity of a sheet of rigid,...Ch. 1 - The heat flux that is applied to the left face of...Ch. 1 - A concrete wall, which has a surface area of 20m2...Ch. 1 - The concrete slab of a basement is 11 m long, 8 m...Ch. 1 - Consider Figure 1.3. The heat flux in the...Ch. 1 - Prob. 1.6PCh. 1 - The inner and outer surface temperatures of a...Ch. 1 - A thermodynamic analysis of a proposed Brayton...Ch. 1 - A glass window of width W=1m and height H=2m is 5...Ch. 1 - Prob. 1.10P
Ch. 1 - The heat flux that is applied to one face of a...Ch. 1 - Prob. 1.12PCh. 1 - Prob. 1.13PCh. 1 - Prob. 1.14PCh. 1 - The 5-mm-thick bottom of a 200-mm-diameter pan may...Ch. 1 - Prob. 1.16PCh. 1 - For a boiling process such as shown in Figure...Ch. 1 - You've experienced convection cooling if you've...Ch. 1 - Prob. 1.19PCh. 1 - A wall has inner and outer surface temperatures of...Ch. 1 - An electric resistance heater is embedded in a...Ch. 1 - Prob. 1.22PCh. 1 - A transmission case measures W=0.30m on a side and...Ch. 1 - Prob. 1.24PCh. 1 - A common procedure for measuring the velocity of...Ch. 1 - Prob. 1.26PCh. 1 - Prob. 1.27PCh. 1 - Prob. 1.28PCh. 1 - Prob. 1.29PCh. 1 - Prob. 1.30PCh. 1 - Prob. 1.31PCh. 1 - Prob. 1.32PCh. 1 - Prob. 1.33PCh. 1 - Prob. 1.34PCh. 1 - An electrical resistor is connected to a battery,...Ch. 1 - Pressurized water pin=10bar,Tin=110C enters the...Ch. 1 - Consider the tube and inlet conditions of Problem...Ch. 1 - An internally reversible refrigerator has a...Ch. 1 - A household refrigerator operates with cold- and...Ch. 1 - Chips of width L=15mm on a side are mounted to a...Ch. 1 - Consider the transmission case of Problem 1.23,...Ch. 1 - One method for growing thin silicon sheets for...Ch. 1 - Heat is transferred by radiation and convection...Ch. 1 - Radioactive wastes are packed in a long,...Ch. 1 - An aluminum plate 4 mm thick is mounted in a...Ch. 1 - A blood warmer is to be used during the...Ch. 1 - Consider a carton of milk that is refrigerated at...Ch. 1 - The energy consumption associated with a home...Ch. 1 - Liquid oxygen, which hems a boiling point of 90 K...Ch. 1 - The emissivity of galvanized steel sheet, a common...Ch. 1 - Three electric resistance heaters of length...Ch. 1 - A hair dryer may be idealized as a circular duct...Ch. 1 - In one stage of an annealing process, 304...Ch. 1 - Convection ovens operate on the principle of...Ch. 1 - Annealing, an important step in semiconductor...Ch. 1 - In the thermal processing of semiconductor...Ch. 1 - A furnace for processing semiconductor materials...Ch. 1 - Single fuel cells such as the one of Example 1.5...Ch. 1 - Prob. 1.59PCh. 1 - Prob. 1.60PCh. 1 - Prob. 1.61PCh. 1 - A small sphere of reference-grade iron with a...Ch. 1 - A 50mm45mm20mm cell phone charger has a surface...Ch. 1 - A spherical, stainless steel (AISI 302) canister...Ch. 1 - Prob. 1.65PCh. 1 - Prob. 1.66PCh. 1 - A photovoltaic panel of dimension 2m4m is...Ch. 1 - Following the hot vacuum forming of a paper-pulp...Ch. 1 - Prob. 1.69PCh. 1 - Prob. 1.70PCh. 1 - Prob. 1.71PCh. 1 - The roof of a car in a parking lot absorbs a solar...Ch. 1 - Prob. 1.73PCh. 1 - Prob. 1.74PCh. 1 - Consider Problem 1.1. If the exposed cold surface...Ch. 1 - Prob. 1.76PCh. 1 - Prob. 1.77PCh. 1 - A thin electrical heating element provides a...Ch. 1 - Prob. 1.79PCh. 1 - Prob. 1.80PCh. 1 - Prob. 1.81PCh. 1 - The curing process of Example 1.9 involves...Ch. 1 - The diameter and surface emissivity of an...Ch. 1 - Bus bars proposed for use in a power transmission...Ch. 1 - A solar flux of 700W/m2 is incident on a...Ch. 1 - In considering the following problems involving...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A pipe carrying superheated steam in a basement at 10C has a surface temperature of 150C. Heat loss from the pipe occurs by radiation (=0.6) and natural convection (hc=25W/m2K). Determine the percentage of the total heat loss by these two mechanisms.arrow_forward3.16 A large, 2.54-cm.-thick copper plate is placed between two air streams. The heat transfer coefficient on one side is and on the other side is . If the temperature of both streams is suddenly changed from 38°C to 93°C, determine how long it takes for the copper plate to reach a temperature of 82°C.arrow_forwardThe heat transfer rate from hot air by convection at 100C flowing over one side of a flat plate with dimensions 0.1m0.5m is determined to be 125 W when the surface of the plate is kept at 30C. What is the average convection heat transfer coefficient between the plate and the air?arrow_forward
- A cooling system is to be designed for a food storage warehouse for keeping perishable foods cool prior to transportation to grocery stores. The warehouse has an effective surface area of 1860 m2 exposed to an ambient air temperature of 32C. The warehouse wall insulation (k=0.17W/(mK)) is 7.5 cm thick. Determine the rate at which heat must be removed (W) from the warehouse to maintain the food at 4C.arrow_forward3.5 In a ball-bearing production facility, steel balls that are each of 15 mm in diameter are annealed by first heating them to 870°C and then slowly cooling in air to 125°C. If the cooling air stream temperature is 60°C, and it has a convective heat transfer coefficient of , determine the time required for the cooling.arrow_forward1.79 Consider the cooling of (a) a personal computer with a separate CPU and (b) a laptop computer. The reliable functioning of these machines depends on their effective cooling. Identify and briefly explain all modes of heat transfer involved in the cooling process.arrow_forward
- 1.67 In beauty salons and in homes, a ubiquitous device is the hairdryer. The front end of a typical hairdryer is idealized as a thin-walled cylindrical duct with a 6-cm diameter with a fan at the inlet that blows air over an electric heating coil as schematically shown in the figure. The design of this appliance requires two power settings, with which the air blown over the electric heating coil is heated from the ambient temperature of to an outlet temperature of and with exit air velocities of 1.0 m/s and 1.5 m/s. Estimate the electric power required for the heating coil to meet these conditions, assuming that heat loss from the outside of the dryer duct is neglected.arrow_forward2.38 The addition of aluminum fins has been suggested to increase the rate of heat dissipation from one side of an electronic device 1 m wide and 1 m tall. The fins are to be rectangular in cross section, 2.5 cm long and 0.25 cm thick, as shown in the figure. There are to be 100 fins per meter. The convection heat transfer coefficient, both for the wall and the fins, is estimated to be K. With this information determine the percent increase in the rate of heat transfer of the finned wall compared to the bare wall.arrow_forwardThe air-conditioning system in a Chevrolet van for use in desert climates is to be sized. The system is to maintain an interior temperature of 20C when the van travels at 100 km/h through dry air at 30C at night. If the top of the van is idealized as a flat plate 6 m long and 2 m wide and the sides as flat plates 3 m tall and 6 m long, estimate the rate at which heat must be removed from the interior to maintain the specifiedarrow_forward
- The temperature of a gas stream is measured by a thermocouple whose junction can be approximated as a 1-mm-diameter sphere. Take the junction’s properties as: k of 32 W/m K, density of 8.2 kg/m^3, c of 300 J/Kg K. On its surface, the overall heat transfer coefficient is 200 W/m^2 K. Neglect any conduction loss from the sphere to other parts of the thermocouple. Create a plot of measurement error as a function of time for the thermocouple, expressed as a fraction of the initial temperature difference.arrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forward19 mm diameter steel balls are quenched by heating to 989 K followed by slow cooling to 400 K in an environment with air at T∞ = 325 K and h = 39 W/m2.K. Assuming that the steel properties are k = 40 W/m.K, ρ = 7800 kg/m3 and C = 600 J/kg.K, estimate the time (in "minutes") required for the cooling process. Bolas de aço com 19 mm de diâmetro são temperadas pelo aquecimento a 989 K seguido pelo resfriamento lento até 400 K em um ambiente com ar a T∞ = 325 K e h = 39 W/m2.K. Admitindo que as propriedades do aço sejam k = 40 W/m.K, ρ = 7800 kg/m3 e C = 600 J/kg.K, estime o tempo (em "minutos") necessário para o processo de resfriamento.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license