Radioactive wastes are packed in a long, thin-walled cylindrical container. The wastes generate thermal energy nonuniformly according to the relation
Obtain an expression for the total rate at which energy is generated in a unit length of the container. Use this result to obtain an expression for the temperature
Want to see the full answer?
Check out a sample textbook solutionChapter 1 Solutions
Introduction to Heat Transfer
- 1.63 Liquid oxygen (LOX) for the space shuttle is stored at 90 K prior to launch in a spherical container 4 m in diameter. To reduce the loss of oxygen, the sphere is insulated with superinsulation developed at the U.S. National Institute of Standards and Technology's Cryogenic Division; the superinsulation has an effective thermal conductivity of 0.00012 W/m K. If the outside temperature is on the average and the LOX has a heat of vaporization of 213 J/g, calculate the thickness of insulation required to keep the LOX evaporation rate below 200 g/h.arrow_forward2.15 Suppose that a pipe carrying a hot fluid with an external temperature of and outer radius is to be insulated with an insulation material of thermal conductivity k and outer radius . Show that if the convection heat transfer coefficient on the outside of the insulation is and the environmental temperature is , the addition of insulation actually increases the rate of heat loss if , and the maximum heat loss occurs when . This radius, is often called the critical radius.arrow_forwardA plane wall of thickness 2L has internal heat sources whose strength varies according to qG=qocos(ax) Where qo is the heat generated per unit volume at the center of the wall (x=0) and a is a constant. If both sides of the wall are maintained at a constant temperature of Tw, derive an expression for the total heat loss from the wall per unit surface area.arrow_forward
- 5.10 Experiments have been performed on the temperature distribution in a homogeneous long cylinder (0.1 m diameter, thermal conductivity of 0.2 W/m K) with uniform internal heat generation. By dimensional analysis, determine the relation between the steady-state temperature at the center of the cylinder , the diameter, the thermal conductivity, and the rate of heat generation. Take the temperature at the surface as your datum. What is the equation for the center temperature if the difference between center and surface temperature is when the heat generation is ?arrow_forward1.3 A furnace wall is to be constructed of brick having standard dimensions of Two kinds of material are available. One has a maximum usable temperature of 1040°C and a thermal conductivity of 1.7 W/(m K), and the other has a maximum temperature limit of 870°C and a thermal conductivity of 0.85 W/(m K). The bricks have the same cost and are laid in any manner, but we wish to design the most economical wall for a furnace with a temperature of 1040°C on the hot side and 200°C on the cold side. If the maximum amount of heat transfer permissible is 950 , determine the most economical arrangement using the available bricks.arrow_forwardOne end of a 0.3-m-long steel rod is connected to a wall at 204C. The other end is connected to a wall that is maintained at 93C. Air is blown across the rod so that a heat transfer coefficient of 17W/m2 K is maintained over the entire surface. If the diameter of the rod is 5 cm and the temperature of the air is 38C, what is the net rate of heat loss to the air?arrow_forward
- 2.5 Derive an expression for the temperature distribution in a plane wall in which there are uniformly distributed heat sources that vary according to the linear relation where is a constant equal to the heat generation per unit volume at the wall temperature . Both sides of the plate are maintained at and the plate thickness is 2L.arrow_forwardA square silicon chip 7mm7mm in size and 0.5-mm thick is mounted on a plastic substrate as shown in the sketch below. The top surface of the chip is cooled by a synthetic liquid flowing over it. Electronic circuits on the bottom of the chip generate heat at a rate of 5 W that must be transferred through the chip. Estimate the steady-state temperature difference between the front and back surfaces of the chip. The thermal conductivity of silicon is 150 W/m K. Problem 1.6arrow_forwardUsing Table 1.4 as a guide, prepare a similar table showing the orders of magnitude of the thermal resistances of a unit area for convection between a surface and various fluids.arrow_forward
- 1.77 Explain each in your own words. (a) What is the mode of heat transfer through a large steel plate that has its surfaces at specified temperatures? (b) What are the modes when the temperature on one surface of the steel plate is not specified, but the surface is exposed to a fluid at a specified temperature?arrow_forward1.4 To measure thermal conductivity, two similar 1-cm-thick specimens are placed in the apparatus shown in the accompanying sketch. Electric current is supplied to the guard heater, and a wattmeter shows that the power dissipation is 10 W. Thermocouples attached to the warmer and to the cooler surfaces show temperatures of 322 and 300 K, respectively. Calculate the thermal conductivity of the material at the mean temperature in W/m K. Problem 1.4arrow_forward3.9 The heat transfer coefficients for the flow of 26.6°C air over a sphere of 1.25 cm in diameter are measured by observing the temperature-time history of a copper ball the same dimension. The temperature of the copper ball was measured by two thermocouples, one located in the center and the other near the surface. The two thermocouples registered, within the accuracy of the recording instruments, the same temperature at any given instant. In one test run, the initial temperature of the ball was 66°C, and the temperature decreased by 7°C in 1.15 min. Calculate the heat transfer coefficient for this case.arrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning