
(a)
Interpretation:
To predict the hybridization and geometry around each indicated atom.
Concept introduction:
Molecular geometry is the three dimensional shape that a molecule in space. It is determine by considering the central atom and the surrounding atom and electron pairs. The shape of the molecule is determined by using Valence Shell Electron Pair Repulsion method. Some of the most common shapes that can be determined by this method are linear, tetrahedral, trigonal planar and pyramidal.
For example.,
Linear (angle = 180o)
Trigonal planar (angle = 120o)
Tetrahedral (angle = 109.5o)
Hybridization is the concept of mixing atomic orbital into new hybrid orbitals suitable for the electron pairing to form

Answer to Problem 1.69P
The hybridization and geometry of
is sp3 and tetrahedral
Explanation of Solution
For the hybridization, count the number of groups present around each atom. For example 4 groups = sp3, 3 groups = sp2, 2 groups = sp. And for the geometry count the surrounding atoms and lone pairs.
Fig.1
In the given compound (Fig.1), the central atom is carbon. It is surrounding by 3 atoms and a lone pair. So the geometry is tetrahedral. Number of groups present around the carbon atom is 4 so the hybridization is sp3.
The geometry is tetrahedral and the hybridization is sp3.
(b)
Interpretation:
To predict the hybridization and geometry around each indicated atom.
Concept introduction:
Molecular geometry is the three dimensional shape that a molecule in space. It is determine by considering the central atom and the surrounding atom and electron pairs. The shape of the molecule is determined by using Valence Shell Electron Pair Repulsion method. Some of the most common shapes that can be determined by this method are linear, tetrahedral, trigonal planar and pyramidal.
For example.,
Linear (angle = 180o)
Trigonal planar (angle = 120o)
Tetrahedral (angle = 109.5o)
Hybridization is the concept of mixing atomic orbital into new hybrid orbitals suitable for the electron pairing to form chemical bonds and valence bonds in other words mixing of two new orbital having same energy and shape. The orbital is called the hybrid orbital and the process is the hybridization. For example mixing s-orbital and p-orbital to form new hybridization is called sp-hybridization.

Answer to Problem 1.69P
The hybridization and geometry of
is nitrogen = sp3 and tetrahedral
Explanation of Solution
For the hybridization, count the number of groups present around each atom. For example 4 groups = sp3, 3 groups = sp2, 2 groups = sp. And for the geometry count the surrounding atoms and lone pairs.
Fig.2
In the given compound (Fig.2), the central atom is carbon. Carbon is surrounding by 4 atoms. So the geometry is tetrahedral. Number of groups present around the nitrogen atom is 4 so the hybridization is sp3.
The geometry of carbon is tetrahedral and the hybridization is sp3.
(c)
Interpretation:
To predict the hybridization and geometry around each indicated atom.
Concept introduction:
Molecular geometry is the three dimensional shape that a molecule in space. It is determine by considering the central atom and the surrounding atom and electron pairs. The shape of the molecule is determined by using Valence Shell Electron Pair Repulsion method. Some of the most common shapes that can be determined by this method are linear, tetrahedral, trigonal planar and pyramidal.
For example.,
Linear (angle = 180o)
Trigonal planar (angle = 120o)
Tetrahedral (angle = 109.5o)
Hybridization is the concept of mixing atomic orbital into new hybrid orbitals suitable for the electron pairing to form chemical bonds and valence bonds in other words mixing of two new orbital having same energy and shape. The orbital is called the hybrid orbital and the process is the hybridization. For example mixing s-orbital and p-orbital to form new hybridization is called sp-hybridization.

Answer to Problem 1.69P
The hybridization and geometry of
is sp3 and tetrahedral
Explanation of Solution
For the hybridization, count the number of groups present around each atom. For example 4 groups = sp3, 3 groups = sp2, 2 groups = sp. And for the geometry count the surrounding atoms and lone pairs.
Fig.3
In the given compound (Fig.3), the central atom is oxygen. It is surrounding by 3 atoms and a lone pair. So the geometry is tetrahedral. Number of groups present around the oxygen atom is 4 so the hybridization is sp3.
The geometry is tetrahedral and the hybridization is sp3.
(d)
Interpretation:
To predict the hybridization and geometry around each indicated atom.
Concept introduction:
Molecular geometry is the three dimensional shape that a molecule in space. It is determine by considering the central atom and the surrounding atom and electron pairs. The shape of the molecule is determined by using Valence Shell Electron Pair Repulsion method. Some of the most common shapes that can be determined by this method are linear, tetrahedral, trigonal planar and pyramidal.
For example.,
Linear (angle = 180o)
Trigonal planar (angle = 120o)
Tetrahedral (angle = 109.5o)
Hybridization is the concept of mixing atomic orbital into new hybrid orbitals suitable for the electron pairing to form chemical bonds and valence bonds in other words mixing of two new orbital having same energy and shape. The orbital is called the hybrid orbital and the process is the hybridization. For example mixing s-orbital and p-orbital to form new hybridization is called sp-hybridization.

Answer to Problem 1.69P
The hybridization and geometry of
is sp3 and tetrahedral
Explanation of Solution
For the hybridization, count the number of groups present around each atom. For example 4 groups = sp3, 3 groups = sp2, 2 groups = sp. And for the geometry count the surrounding atoms and lone pairs.
Fig.4
In the given compound(Fig.4), the central atom is carbon. It is surrounding by 4 atoms. So the geometry is tetrahedral. Number of groups present around the carbon atom is 4 so the hybridization is sp3.
The geometry is tetrahedral and the hybridization is sp3.
(e)
Interpretation:
To predict the hybridization and geometry around each indicated atom.
Concept introduction:
Molecular geometry is the three dimensional shape that a molecule in space. It is determine by considering the central atom and the surrounding atom and electron pairs. The shape of the molecule is determined by using Valence Shell Electron Pair Repulsion method. Some of the most common shapes that can be determined by this method are linear, tetrahedral, trigonal planar and pyramidal.
For example.,
Linear (angle = 180o)
Trigonal planar (angle = 120o)
Tetrahedral (angle = 109.5o)
Hybridization is the concept of mixing atomic orbital into new hybrid orbitals suitable for the electron pairing to form chemical bonds and valence bonds in other words mixing of two new orbital having same energy and shape. The orbital is called the hybrid orbital and the process is the hybridization. For example mixing s-orbital and p-orbital to form new hybridization is called sp-hybridization.

Answer to Problem 1.69P
The hybridization and geometry of
is sp and linear
Explanation of Solution
For the hybridization, count the number of groups present around each atom. For example 4 groups = sp3, 3 groups = sp2, 2 groups = sp. And for the geometry count the surrounding atoms and lone pairs.
Fig.5
In the given compound (Fig.5), the central atom is carbon. It is surrounding by 2 atoms. So the geometry is linear. Number of groups present around the carbon atom is 2 so the hybridization is sp.
The geometry is linear and the hybridization is sp.
(f)
Interpretation:
To predict the hybridization and geometry around each indicated atom.
Concept introduction:
Molecular geometry is the three dimensional shape that a molecule in space. It is determine by considering the central atom and the surrounding atom and electron pairs. The shape of the molecule is determined by using Valence Shell Electron Pair Repulsion method. Some of the most common shapes that can be determined by this method are linear, tetrahedral, trigonal planar and pyramidal.
For example.,
Linear (angle = 180o)
Trigonal planar (angle = 120o)
Tetrahedral (angle = 109.5o)
Hybridization is the concept of mixing atomic orbital into new hybrid orbitals suitable for the electron pairing to form chemical bonds and valence bonds in other words mixing of two new orbital having same energy and shape. The orbital is called the hybrid orbital and the process is the hybridization. For example mixing s-orbital and p-orbital to form new hybridization is called sp-hybridization.

Answer to Problem 1.69P
The hybridization and geometry of
is nitrogen = sp2 and trigonal planar
Explanation of Solution
For the hybridization, count the number of groups present around each atom. For example 4 groups = sp3, 3 groups = sp2, 2 groups = sp. And for the geometry count the surrounding atoms and lone pairs.
Fig.6
In the given compound (Fig.6), the central atom is nitrogen. Nitrogen is surrounding by 2 atoms and a lone pair. So the geometry is trigonal planar. Number of groups present around the nitrogen atom is 3 so the hybridization is sp2.
The geometry of nitrogen is trigonal planar and the hybridization is sp2.
(g)
Interpretation:
To predict the hybridization and geometry around each indicated atom.
Concept introduction:
Molecular geometry is the three dimensional shape that a molecule in space. It is determine by considering the central atom and the surrounding atom and electron pairs. The shape of the molecule is determined by using Valence Shell Electron Pair Repulsion method. Some of the most common shapes that can be determined by this method are linear, tetrahedral, trigonal planar and pyramidal.
For example.,
Linear (angle = 180o)
Trigonal planar (angle = 120o)
Tetrahedral (angle = 109.5o)
Hybridization is the concept of mixing atomic orbital into new hybrid orbitals suitable for the electron pairing to form chemical bonds and valence bonds in other words mixing of two new orbital having same energy and shape. The orbital is called the hybrid orbital and the process is the hybridization. For example mixing s-orbital and p-orbital to form new hybridization is called sp-hybridization.

Answer to Problem 1.69P
The hybridization and geometry of
is carbon-a = sp2 and trigonal planar
carbon-b = sp and linear
Explanation of Solution
For the hybridization, count the number of groups present around each atom. For example 4 groups = sp3, 3 groups = sp2, 2 groups = sp. And for the geometry count the surrounding atoms and lone pairs.
Fig.7
In the given compound (Fig.7), the central atom is carbon. The given structure has two carbons. Carbon-a is surrounding by 3 atoms. So the geometry is trigonal planar. Number of groups present around the carbon atom is 3 so the hybridization is sp2.
Carbon-b is surrounding by 2 atoms. So the geometry is linear. Number of groups present around the carbon atom is 2 so the hybridization is sp.
The geometry of carbon-a is trigonal planar and the hybridization is sp2. The geometry of carbon-b is linear and the hybridization is sp.
Want to see more full solutions like this?
Chapter 1 Solutions
Organic Chemistry
- From your calculations, which reaction experiment had closest to stoichiometric quantities? How many moles of NaHCO3 and HC2H3O2 were present in this reaction?arrow_forward18. Arrange the following carbocations in order of decreasing stability. 1 2 A 3124 B 4213 C 2431 D 1234 E 2134 SPL 3 4arrow_forwardAcetic acid is added to DI water at an initial concentration of 10 -6 M (Ka=1.8x10-5) A. Using the "ICE" Method, what would the pH be at equilibrium? State assumptions and show your work. B. Using the simultaneous equations method, what would the pH be at equilibrium? Show your workarrow_forward
- 1. Show that the change in entropy for a fixed amount of ideal gas held at a constant temperature undergoing a volume change is given by the simple equation AS = NkB In Hint: Start with the equation M dS = du + (Œ) dv - Ž (#) an, dU du+av-dN; j=1 Why doesn't the equation for the entropy of an ideal gas depend on the strength of the intermolecular forces for the gas?arrow_forward2. Make an ice cube at 1 bar pressure by freezing an amount of liquid water that is 2 cm x 2 cm x 2 cm in volume. The density of liquid water at 0 °C is 1.000 g cm³ and the density of ice at 0 °C is 0.915 g cm³. Note that this difference in density is the reason your water pipes burst if they freeze and why you shouldn't forget to take your bottle of pop out of the freezer if you put it in there to try and cool it down faster. A. What is the work of expansion upon freezing? B. Is work done on the system or by the system?arrow_forwardI have a excitation/emission spectra of a quinine standard solution here, and I'm having trouble interpreting it. the red line is emission the blue line is excitation. i'm having trouble interpreting properly. just want to know if there is any evidence of raman or rayleigh peaks in the spectra.arrow_forward
- Give the major product of the following reaction. excess 1. OH, H₂O 1.OH H CH3CH2CH21 H 2. A.-H₂O Draw the molecule on the canvas by choosing buttons from the Tools (for bonds), Atoms, and Advanced Template toolbars. The single bond is active by default.arrow_forward2. Use Hess's law to calculate the AH (in kJ) for: rxn CIF(g) + F2(g) → CIF 3 (1) using the following information: 2CIF(g) + O2(g) → Cl₂O(g) + OF 2(g) AH = 167.5 kJ ΔΗ 2F2 (g) + O2(g) → 2 OF 2(g) 2C1F3 (1) + 202(g) → Cl₂O(g) + 3 OF 2(g) о = = -43.5 kJ AH = 394.1kJarrow_forwardci Draw the major product(s) of the following reactions: (3 pts) CH3 HNO3/H2SO4 HNO3/ H2SO4 OCH3 (1 pts)arrow_forward
- Organic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning

