(a)
Interpretation:
To predict the hybridization and geometry around each indicated atom.
Concept introduction:
Molecular geometry is the three dimensional shape that a molecule in space. It is determine by considering the central atom and the surrounding atom and electron pairs. The shape of the molecule is determined by using Valence Shell Electron Pair Repulsion method. Some of the most common shapes that can be determined by this method are linear, tetrahedral, trigonal planar and pyramidal.
For example.,
Linear (angle = 180o)
Trigonal planar (angle = 120o)
Tetrahedral (angle = 109.5o)
Hybridization is the concept of mixing atomic orbital into new hybrid orbitals suitable for the electron pairing to form
Answer to Problem 1.69P
The hybridization and geometry of
is sp3 and tetrahedral
Explanation of Solution
For the hybridization, count the number of groups present around each atom. For example 4 groups = sp3, 3 groups = sp2, 2 groups = sp. And for the geometry count the surrounding atoms and lone pairs.
Fig.1
In the given compound (Fig.1), the central atom is carbon. It is surrounding by 3 atoms and a lone pair. So the geometry is tetrahedral. Number of groups present around the carbon atom is 4 so the hybridization is sp3.
The geometry is tetrahedral and the hybridization is sp3.
(b)
Interpretation:
To predict the hybridization and geometry around each indicated atom.
Concept introduction:
Molecular geometry is the three dimensional shape that a molecule in space. It is determine by considering the central atom and the surrounding atom and electron pairs. The shape of the molecule is determined by using Valence Shell Electron Pair Repulsion method. Some of the most common shapes that can be determined by this method are linear, tetrahedral, trigonal planar and pyramidal.
For example.,
Linear (angle = 180o)
Trigonal planar (angle = 120o)
Tetrahedral (angle = 109.5o)
Hybridization is the concept of mixing atomic orbital into new hybrid orbitals suitable for the electron pairing to form chemical bonds and valence bonds in other words mixing of two new orbital having same energy and shape. The orbital is called the hybrid orbital and the process is the hybridization. For example mixing s-orbital and p-orbital to form new hybridization is called sp-hybridization.
Answer to Problem 1.69P
The hybridization and geometry of
is nitrogen = sp3 and tetrahedral
Explanation of Solution
For the hybridization, count the number of groups present around each atom. For example 4 groups = sp3, 3 groups = sp2, 2 groups = sp. And for the geometry count the surrounding atoms and lone pairs.
Fig.2
In the given compound (Fig.2), the central atom is carbon. Carbon is surrounding by 4 atoms. So the geometry is tetrahedral. Number of groups present around the nitrogen atom is 4 so the hybridization is sp3.
The geometry of carbon is tetrahedral and the hybridization is sp3.
(c)
Interpretation:
To predict the hybridization and geometry around each indicated atom.
Concept introduction:
Molecular geometry is the three dimensional shape that a molecule in space. It is determine by considering the central atom and the surrounding atom and electron pairs. The shape of the molecule is determined by using Valence Shell Electron Pair Repulsion method. Some of the most common shapes that can be determined by this method are linear, tetrahedral, trigonal planar and pyramidal.
For example.,
Linear (angle = 180o)
Trigonal planar (angle = 120o)
Tetrahedral (angle = 109.5o)
Hybridization is the concept of mixing atomic orbital into new hybrid orbitals suitable for the electron pairing to form chemical bonds and valence bonds in other words mixing of two new orbital having same energy and shape. The orbital is called the hybrid orbital and the process is the hybridization. For example mixing s-orbital and p-orbital to form new hybridization is called sp-hybridization.
Answer to Problem 1.69P
The hybridization and geometry of
is sp3 and tetrahedral
Explanation of Solution
For the hybridization, count the number of groups present around each atom. For example 4 groups = sp3, 3 groups = sp2, 2 groups = sp. And for the geometry count the surrounding atoms and lone pairs.
Fig.3
In the given compound (Fig.3), the central atom is oxygen. It is surrounding by 3 atoms and a lone pair. So the geometry is tetrahedral. Number of groups present around the oxygen atom is 4 so the hybridization is sp3.
The geometry is tetrahedral and the hybridization is sp3.
(d)
Interpretation:
To predict the hybridization and geometry around each indicated atom.
Concept introduction:
Molecular geometry is the three dimensional shape that a molecule in space. It is determine by considering the central atom and the surrounding atom and electron pairs. The shape of the molecule is determined by using Valence Shell Electron Pair Repulsion method. Some of the most common shapes that can be determined by this method are linear, tetrahedral, trigonal planar and pyramidal.
For example.,
Linear (angle = 180o)
Trigonal planar (angle = 120o)
Tetrahedral (angle = 109.5o)
Hybridization is the concept of mixing atomic orbital into new hybrid orbitals suitable for the electron pairing to form chemical bonds and valence bonds in other words mixing of two new orbital having same energy and shape. The orbital is called the hybrid orbital and the process is the hybridization. For example mixing s-orbital and p-orbital to form new hybridization is called sp-hybridization.
Answer to Problem 1.69P
The hybridization and geometry of
is sp3 and tetrahedral
Explanation of Solution
For the hybridization, count the number of groups present around each atom. For example 4 groups = sp3, 3 groups = sp2, 2 groups = sp. And for the geometry count the surrounding atoms and lone pairs.
Fig.4
In the given compound(Fig.4), the central atom is carbon. It is surrounding by 4 atoms. So the geometry is tetrahedral. Number of groups present around the carbon atom is 4 so the hybridization is sp3.
The geometry is tetrahedral and the hybridization is sp3.
(e)
Interpretation:
To predict the hybridization and geometry around each indicated atom.
Concept introduction:
Molecular geometry is the three dimensional shape that a molecule in space. It is determine by considering the central atom and the surrounding atom and electron pairs. The shape of the molecule is determined by using Valence Shell Electron Pair Repulsion method. Some of the most common shapes that can be determined by this method are linear, tetrahedral, trigonal planar and pyramidal.
For example.,
Linear (angle = 180o)
Trigonal planar (angle = 120o)
Tetrahedral (angle = 109.5o)
Hybridization is the concept of mixing atomic orbital into new hybrid orbitals suitable for the electron pairing to form chemical bonds and valence bonds in other words mixing of two new orbital having same energy and shape. The orbital is called the hybrid orbital and the process is the hybridization. For example mixing s-orbital and p-orbital to form new hybridization is called sp-hybridization.
Answer to Problem 1.69P
The hybridization and geometry of
is sp and linear
Explanation of Solution
For the hybridization, count the number of groups present around each atom. For example 4 groups = sp3, 3 groups = sp2, 2 groups = sp. And for the geometry count the surrounding atoms and lone pairs.
Fig.5
In the given compound (Fig.5), the central atom is carbon. It is surrounding by 2 atoms. So the geometry is linear. Number of groups present around the carbon atom is 2 so the hybridization is sp.
The geometry is linear and the hybridization is sp.
(f)
Interpretation:
To predict the hybridization and geometry around each indicated atom.
Concept introduction:
Molecular geometry is the three dimensional shape that a molecule in space. It is determine by considering the central atom and the surrounding atom and electron pairs. The shape of the molecule is determined by using Valence Shell Electron Pair Repulsion method. Some of the most common shapes that can be determined by this method are linear, tetrahedral, trigonal planar and pyramidal.
For example.,
Linear (angle = 180o)
Trigonal planar (angle = 120o)
Tetrahedral (angle = 109.5o)
Hybridization is the concept of mixing atomic orbital into new hybrid orbitals suitable for the electron pairing to form chemical bonds and valence bonds in other words mixing of two new orbital having same energy and shape. The orbital is called the hybrid orbital and the process is the hybridization. For example mixing s-orbital and p-orbital to form new hybridization is called sp-hybridization.
Answer to Problem 1.69P
The hybridization and geometry of
is nitrogen = sp2 and trigonal planar
Explanation of Solution
For the hybridization, count the number of groups present around each atom. For example 4 groups = sp3, 3 groups = sp2, 2 groups = sp. And for the geometry count the surrounding atoms and lone pairs.
Fig.6
In the given compound (Fig.6), the central atom is nitrogen. Nitrogen is surrounding by 2 atoms and a lone pair. So the geometry is trigonal planar. Number of groups present around the nitrogen atom is 3 so the hybridization is sp2.
The geometry of nitrogen is trigonal planar and the hybridization is sp2.
(g)
Interpretation:
To predict the hybridization and geometry around each indicated atom.
Concept introduction:
Molecular geometry is the three dimensional shape that a molecule in space. It is determine by considering the central atom and the surrounding atom and electron pairs. The shape of the molecule is determined by using Valence Shell Electron Pair Repulsion method. Some of the most common shapes that can be determined by this method are linear, tetrahedral, trigonal planar and pyramidal.
For example.,
Linear (angle = 180o)
Trigonal planar (angle = 120o)
Tetrahedral (angle = 109.5o)
Hybridization is the concept of mixing atomic orbital into new hybrid orbitals suitable for the electron pairing to form chemical bonds and valence bonds in other words mixing of two new orbital having same energy and shape. The orbital is called the hybrid orbital and the process is the hybridization. For example mixing s-orbital and p-orbital to form new hybridization is called sp-hybridization.
Answer to Problem 1.69P
The hybridization and geometry of
is carbon-a = sp2 and trigonal planar
carbon-b = sp and linear
Explanation of Solution
For the hybridization, count the number of groups present around each atom. For example 4 groups = sp3, 3 groups = sp2, 2 groups = sp. And for the geometry count the surrounding atoms and lone pairs.
Fig.7
In the given compound (Fig.7), the central atom is carbon. The given structure has two carbons. Carbon-a is surrounding by 3 atoms. So the geometry is trigonal planar. Number of groups present around the carbon atom is 3 so the hybridization is sp2.
Carbon-b is surrounding by 2 atoms. So the geometry is linear. Number of groups present around the carbon atom is 2 so the hybridization is sp.
The geometry of carbon-a is trigonal planar and the hybridization is sp2. The geometry of carbon-b is linear and the hybridization is sp.
Want to see more full solutions like this?
Chapter 1 Solutions
Organic Chemistry
- (12) Which one of the following statements about fluo- rometry is FALSE? a) Fluorescence is better detected at 90 from the exci- tation direction. b) Fluorescence is typically shifted to longer wave- length from the excitation wavelength. c) For most fluorescent compounds, radiation is pro- duced by a transitionarrow_forwardDon't used Ai solutionarrow_forwardDon't used Ai solutionarrow_forward
- Don't used Ai solutionarrow_forwardIndicate the correct option.a) Graphite conducts electricity, being an isotropic materialb) Graphite is not a conductor of electricityc) Both are falsearrow_forward(f) SO: Best Lewis Structure 3 e group geometry:_ shape/molecular geometry:, (g) CF2CF2 Best Lewis Structure polarity: e group arrangement:_ shape/molecular geometry: (h) (NH4)2SO4 Best Lewis Structure polarity: e group arrangement: shape/molecular geometry: polarity: Sketch (with angles): Sketch (with angles): Sketch (with angles):arrow_forward
- 1. Problem Set 3b Chem 141 For each of the following compounds draw the BEST Lewis Structure then sketch the molecule (showing bond angles). Identify (i) electron group geometry (ii) shape around EACH central atom (iii) whether the molecule is polar or non-polar (iv) (a) SeF4 Best Lewis Structure e group arrangement:_ shape/molecular geometry: polarity: (b) AsOBr3 Best Lewis Structure e group arrangement:_ shape/molecular geometry: polarity: Sketch (with angles): Sketch (with angles):arrow_forward(c) SOCI Best Lewis Structure 2 e group arrangement: shape/molecular geometry:_ (d) PCls Best Lewis Structure polarity: e group geometry:_ shape/molecular geometry:_ (e) Ba(BrO2): Best Lewis Structure polarity: e group arrangement: shape/molecular geometry: polarity: Sketch (with angles): Sketch (with angles): Sketch (with angles):arrow_forwardDon't used Ai solutionarrow_forward
- Organic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning