(a)
Interpretation:
To predict the hybridization and geometry around each indicated atom.
Concept introduction:
Molecular geometry is the three dimensional shape that a molecule in space. It is determine by considering the central atom and the surrounding atom and electron pairs. The shape of the molecule is determined by using Valence Shell Electron Pair Repulsion method. Some of the most common shapes that can be determined by this method are linear, tetrahedral, trigonal planar and pyramidal.
For example.,
Linear (angle = 180o)
Trigonal planar (angle = 120o)
Tetrahedral (angle = 109.5o)
Hybridization is the concept of mixing atomic orbital into new hybrid orbitals suitable for the electron pairing to form
Answer to Problem 1.69P
The hybridization and geometry of
is sp3 and tetrahedral
Explanation of Solution
For the hybridization, count the number of groups present around each atom. For example 4 groups = sp3, 3 groups = sp2, 2 groups = sp. And for the geometry count the surrounding atoms and lone pairs.
Fig.1
In the given compound (Fig.1), the central atom is carbon. It is surrounding by 3 atoms and a lone pair. So the geometry is tetrahedral. Number of groups present around the carbon atom is 4 so the hybridization is sp3.
The geometry is tetrahedral and the hybridization is sp3.
(b)
Interpretation:
To predict the hybridization and geometry around each indicated atom.
Concept introduction:
Molecular geometry is the three dimensional shape that a molecule in space. It is determine by considering the central atom and the surrounding atom and electron pairs. The shape of the molecule is determined by using Valence Shell Electron Pair Repulsion method. Some of the most common shapes that can be determined by this method are linear, tetrahedral, trigonal planar and pyramidal.
For example.,
Linear (angle = 180o)
Trigonal planar (angle = 120o)
Tetrahedral (angle = 109.5o)
Hybridization is the concept of mixing atomic orbital into new hybrid orbitals suitable for the electron pairing to form chemical bonds and valence bonds in other words mixing of two new orbital having same energy and shape. The orbital is called the hybrid orbital and the process is the hybridization. For example mixing s-orbital and p-orbital to form new hybridization is called sp-hybridization.
Answer to Problem 1.69P
The hybridization and geometry of
is nitrogen = sp3 and tetrahedral
Explanation of Solution
For the hybridization, count the number of groups present around each atom. For example 4 groups = sp3, 3 groups = sp2, 2 groups = sp. And for the geometry count the surrounding atoms and lone pairs.
Fig.2
In the given compound (Fig.2), the central atom is carbon. Carbon is surrounding by 4 atoms. So the geometry is tetrahedral. Number of groups present around the nitrogen atom is 4 so the hybridization is sp3.
The geometry of carbon is tetrahedral and the hybridization is sp3.
(c)
Interpretation:
To predict the hybridization and geometry around each indicated atom.
Concept introduction:
Molecular geometry is the three dimensional shape that a molecule in space. It is determine by considering the central atom and the surrounding atom and electron pairs. The shape of the molecule is determined by using Valence Shell Electron Pair Repulsion method. Some of the most common shapes that can be determined by this method are linear, tetrahedral, trigonal planar and pyramidal.
For example.,
Linear (angle = 180o)
Trigonal planar (angle = 120o)
Tetrahedral (angle = 109.5o)
Hybridization is the concept of mixing atomic orbital into new hybrid orbitals suitable for the electron pairing to form chemical bonds and valence bonds in other words mixing of two new orbital having same energy and shape. The orbital is called the hybrid orbital and the process is the hybridization. For example mixing s-orbital and p-orbital to form new hybridization is called sp-hybridization.
Answer to Problem 1.69P
The hybridization and geometry of
is sp3 and tetrahedral
Explanation of Solution
For the hybridization, count the number of groups present around each atom. For example 4 groups = sp3, 3 groups = sp2, 2 groups = sp. And for the geometry count the surrounding atoms and lone pairs.
Fig.3
In the given compound (Fig.3), the central atom is oxygen. It is surrounding by 3 atoms and a lone pair. So the geometry is tetrahedral. Number of groups present around the oxygen atom is 4 so the hybridization is sp3.
The geometry is tetrahedral and the hybridization is sp3.
(d)
Interpretation:
To predict the hybridization and geometry around each indicated atom.
Concept introduction:
Molecular geometry is the three dimensional shape that a molecule in space. It is determine by considering the central atom and the surrounding atom and electron pairs. The shape of the molecule is determined by using Valence Shell Electron Pair Repulsion method. Some of the most common shapes that can be determined by this method are linear, tetrahedral, trigonal planar and pyramidal.
For example.,
Linear (angle = 180o)
Trigonal planar (angle = 120o)
Tetrahedral (angle = 109.5o)
Hybridization is the concept of mixing atomic orbital into new hybrid orbitals suitable for the electron pairing to form chemical bonds and valence bonds in other words mixing of two new orbital having same energy and shape. The orbital is called the hybrid orbital and the process is the hybridization. For example mixing s-orbital and p-orbital to form new hybridization is called sp-hybridization.
Answer to Problem 1.69P
The hybridization and geometry of
is sp3 and tetrahedral
Explanation of Solution
For the hybridization, count the number of groups present around each atom. For example 4 groups = sp3, 3 groups = sp2, 2 groups = sp. And for the geometry count the surrounding atoms and lone pairs.
Fig.4
In the given compound(Fig.4), the central atom is carbon. It is surrounding by 4 atoms. So the geometry is tetrahedral. Number of groups present around the carbon atom is 4 so the hybridization is sp3.
The geometry is tetrahedral and the hybridization is sp3.
(e)
Interpretation:
To predict the hybridization and geometry around each indicated atom.
Concept introduction:
Molecular geometry is the three dimensional shape that a molecule in space. It is determine by considering the central atom and the surrounding atom and electron pairs. The shape of the molecule is determined by using Valence Shell Electron Pair Repulsion method. Some of the most common shapes that can be determined by this method are linear, tetrahedral, trigonal planar and pyramidal.
For example.,
Linear (angle = 180o)
Trigonal planar (angle = 120o)
Tetrahedral (angle = 109.5o)
Hybridization is the concept of mixing atomic orbital into new hybrid orbitals suitable for the electron pairing to form chemical bonds and valence bonds in other words mixing of two new orbital having same energy and shape. The orbital is called the hybrid orbital and the process is the hybridization. For example mixing s-orbital and p-orbital to form new hybridization is called sp-hybridization.
Answer to Problem 1.69P
The hybridization and geometry of
is sp and linear
Explanation of Solution
For the hybridization, count the number of groups present around each atom. For example 4 groups = sp3, 3 groups = sp2, 2 groups = sp. And for the geometry count the surrounding atoms and lone pairs.
Fig.5
In the given compound (Fig.5), the central atom is carbon. It is surrounding by 2 atoms. So the geometry is linear. Number of groups present around the carbon atom is 2 so the hybridization is sp.
The geometry is linear and the hybridization is sp.
(f)
Interpretation:
To predict the hybridization and geometry around each indicated atom.
Concept introduction:
Molecular geometry is the three dimensional shape that a molecule in space. It is determine by considering the central atom and the surrounding atom and electron pairs. The shape of the molecule is determined by using Valence Shell Electron Pair Repulsion method. Some of the most common shapes that can be determined by this method are linear, tetrahedral, trigonal planar and pyramidal.
For example.,
Linear (angle = 180o)
Trigonal planar (angle = 120o)
Tetrahedral (angle = 109.5o)
Hybridization is the concept of mixing atomic orbital into new hybrid orbitals suitable for the electron pairing to form chemical bonds and valence bonds in other words mixing of two new orbital having same energy and shape. The orbital is called the hybrid orbital and the process is the hybridization. For example mixing s-orbital and p-orbital to form new hybridization is called sp-hybridization.
Answer to Problem 1.69P
The hybridization and geometry of
is nitrogen = sp2 and trigonal planar
Explanation of Solution
For the hybridization, count the number of groups present around each atom. For example 4 groups = sp3, 3 groups = sp2, 2 groups = sp. And for the geometry count the surrounding atoms and lone pairs.
Fig.6
In the given compound (Fig.6), the central atom is nitrogen. Nitrogen is surrounding by 2 atoms and a lone pair. So the geometry is trigonal planar. Number of groups present around the nitrogen atom is 3 so the hybridization is sp2.
The geometry of nitrogen is trigonal planar and the hybridization is sp2.
(g)
Interpretation:
To predict the hybridization and geometry around each indicated atom.
Concept introduction:
Molecular geometry is the three dimensional shape that a molecule in space. It is determine by considering the central atom and the surrounding atom and electron pairs. The shape of the molecule is determined by using Valence Shell Electron Pair Repulsion method. Some of the most common shapes that can be determined by this method are linear, tetrahedral, trigonal planar and pyramidal.
For example.,
Linear (angle = 180o)
Trigonal planar (angle = 120o)
Tetrahedral (angle = 109.5o)
Hybridization is the concept of mixing atomic orbital into new hybrid orbitals suitable for the electron pairing to form chemical bonds and valence bonds in other words mixing of two new orbital having same energy and shape. The orbital is called the hybrid orbital and the process is the hybridization. For example mixing s-orbital and p-orbital to form new hybridization is called sp-hybridization.
Answer to Problem 1.69P
The hybridization and geometry of
is carbon-a = sp2 and trigonal planar
carbon-b = sp and linear
Explanation of Solution
For the hybridization, count the number of groups present around each atom. For example 4 groups = sp3, 3 groups = sp2, 2 groups = sp. And for the geometry count the surrounding atoms and lone pairs.
Fig.7
In the given compound (Fig.7), the central atom is carbon. The given structure has two carbons. Carbon-a is surrounding by 3 atoms. So the geometry is trigonal planar. Number of groups present around the carbon atom is 3 so the hybridization is sp2.
Carbon-b is surrounding by 2 atoms. So the geometry is linear. Number of groups present around the carbon atom is 2 so the hybridization is sp.
The geometry of carbon-a is trigonal planar and the hybridization is sp2. The geometry of carbon-b is linear and the hybridization is sp.
Want to see more full solutions like this?
Chapter 1 Solutions
Organic Chemistry
- Consider the incomplete orbital representation of O2 , below right. a. Identify which lobes are hybrid orbitals (identify the type) and which lobes arep orbitals. b. Use dotted lines to show any bonds. c. Use up or down arrows to show electron occupation of each hybrid orbital or bond.arrow_forwardWhich molecule below has a nonpolar bond in which the electrons are being shared equally? a.H2O b.NH3 c.Cl2 d.CH4arrow_forwardPredict the hybridization and geometry around each highlighted atom.arrow_forward
- Predict the hybridization and geometry around each highlighted atom. CI a. b. -o c. d. е. =NOCH3arrow_forwardPlease do questions A. and B.arrow_forwardNumber of Molecule valence electrons Formal Charge Electron-Group Geometry Molecular Geometry Resonance COSe C: C: Select one ... C: Select one.. Select one .. SH412 S: S: Select one .. S: Select one .. Select one ... SeHĄBr2 Se: Se: Select one... Se: Select one ... Select one ... AtGeN Ge: Ge: Select one ... Ge: Select one ... Select one ... CIGEP Ge: Ge: Select one... Ge: Select one ... Select one ... V 10000arrow_forward
- Answer the questions below about the highlighted atom in this Lewis structure: H. H. H C-C=C-H H. In how many sigma bonds does the highlighted atom participate? In how many pi bonds does the.highlighted atom participate? U What is the orbital hybridization of the highlighted atom?arrow_forwardNumber of Molecule valence electrons Formal Charge Electron-Group Geometry Molecular Geometry Resonance AIH2ATCI- Al: Al: Select one.. Al: Select one .. Select one ... AIHAT,Br Al: Al: Select one ... Al: Select one ... Select one ... FSIAS Si: Si: Select one .. Si: Select one ... Select one .. PHATCI P: P: Select one ... P: Select one.. Select one .. PCIFI P: P: Select one ... P: Select one ... Select one ... varrow_forwardI Bonding A T bond arises from "sideways" overlap of two parallel p orbitals. The electron density lies above and below a plane containing the 2 nuclei that is perpendicular to the orbitals. 8.8 p-orbital p-orbital T bond atom1 atom2 What atomic or hybrid orbitals make up the T bond between C, and C, in acetylene, C,H, ? orbital on C, + orbital on C2 How many o bonds does C, have in C,H, ? How many T bonds does C, have ?arrow_forward
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningOrganic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage Learning