You are checking the performance of a reactor in which acetylene is produced from methane in the reaction
An undesired side reaction is the decomposition of acetylene:
Methane is fed to the reactor at 1500°C at a rate of 10.0 mol CH4/S. Heat is transferred to the reactor at a rate of 975 kW. The product temperature is 1500°C and the fractional conversion of methane is 0.600. A flowchart of the process and an enthalpy table are shown below.
References: C(s), H2(g), at 25°C, 1 atm
Substance |
|
|
|
|
|
10.0 | 41.65 |
|
|
|
— | — |
|
|
|
— | — |
|
|
C | — | — |
|
|
(a) Using the heat capacities given below for enthalpy calculations, write and solve material balances and an energy balance to determine the product component flow rates and the yield of acetylene (mol C2H2produced/mol CH4consumed).
For example, the specific enthalpy of methane at 1500°C relative to methane at 25°C is [0.079 kJ/(mol·°C)](1500°C - 25°C) = 116.5 kJ/mol.
(b) The reactor efficiency may be defined as the ratio (actual acetylene yield/acetylene yield with no side reaction). What is the reactor efficiency for this process?
(c) The mean residence time in the reactor [
If the mean residence time increases to infinity, what would you expect to find in the product stream? Explain.
Someone proposes running the process with a much greater feed rate than the one used in Part (a), separating the products from the unconsumed reactants, and recycling the reactants. Why would you expect that process design to increase the reactor efficiency? What else would you need to know to determine whether the new design would be cost-effective?
Trending nowThis is a popular solution!
Chapter 9 Solutions
EBK ELEMENTARY PRINCIPLES OF CHEMICAL P
Additional Science Textbook Solutions
Starting Out with Python (4th Edition)
Web Development and Design Foundations with HTML5 (8th Edition)
Concepts Of Programming Languages
Problem Solving with C++ (10th Edition)
Introduction To Programming Using Visual Basic (11th Edition)
Degarmo's Materials And Processes In Manufacturing
- A chemical reaction takes place in a container of cross-sectional area 50.0 cm2. As a result of the reaction, a piston is pushed out through 15 cm against an external pressure of 121 kPa. Calculate the work done (in J) by the system.arrow_forwardExample 7.2 Steam is generated in a high pressure boiler containing tubes 2.5 m long and 12.5 mm internal diameter. The wall roughness is 0.005 mm. Water enters the tubes at a pressure of 55.05 bar and a temperature of 270°C, and the water flow rate through each tube is 500 kg/h. Each tube is heated uniformly at a rate of 50 kW. Calle (a) Estimate the pressure drop across each tube (neglecting end effects) using (i) the homogeneous flow model and (ii) the Martinelli-Nelson correlation. (b) How should the calculation be modified if the inlet temperature were 230°C at the same pressure?arrow_forwardPlease solve this question by simulation in aspen hysysarrow_forward
- (11.35. For a binary gas mixture described by Eqs. (3.37) and (11.58), prove that: 4812 Pу132 ✓ GE = 812 Py1 y2. ✓ SE dT HE-12 T L = = (812 - 7 1/8/123) d² 812 Pylyz C=-T Pylyz dT dT² See also Eq. (11.84), and note that 812 = 2B12 B11 - B22. perimental values of HE for binary liquid mixtures ofarrow_forwardplease provide me the solution with more details. because the previous solution is not cleararrow_forwardplease, provide me the solution with details.arrow_forward
- please, provide me the solution with detailsarrow_forwardPlease, provide me the solution with details and plot.arrow_forwardQ2/ An adsorption study is set up in laboratory by adding a known amount of activated carbon to six which contain 200 mL of an industrial waste. An additional flask containing 200 mL of waste but no c is run as a blank. Plot the Langmuir isotherm and determine the values of the constants. Flask No. Mass of C (mg) Volume in Final COD Flask (mL) (mg C/L) 1 804 200 4.7 2 668 200 7.0 3 512 200 9.31 4 393 200 16.6 C 5 313 200 32.5 6 238 200 62.8 7 0 200 250arrow_forward
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The