Concept explainers
The standard heat of the reaction
is
- Briefly explain what that means. Your explanation may take the form "When
(specifyquantities of reactant species and their physical states) react to form
(quantities of product
species and their physical state), the change in enthalpy is
What is
- for
- Estimate the enthalpy change associated with the consumption of 340 g NH3/s if the reactants and products are all at 25°C. (See Example 9.1-1.) What have you assumed about the reactor pressure? (You don't have to assume that it equals 1 atm.) The values of
(a)
To explain:
The given equation
Concept introduction:
When chemical reaction transforms the matter, there will be change in enthalpy in a system. This will happen when the products and reactants which involves in the chemical reaction are in their states. This is called standard heat or enthalpy of reaction.
Answer to Problem 9.1P
When 4 moles of gaseous ammonia and 5 moles of gaseous oxygen react to form 4 moles of gaseous nitric oxide and 6 moles of gaseous water, the change in enthalpy is
Explanation of Solution
The standard heat of the reaction is,
When 4 moles of gaseous ammonia and 5 moles of gaseous oxygen react to form 4 moles of gaseous nitric oxide and 6 moles of gaseous water, the change in enthalpy is
(b)
To say:
Whether the reaction is exothermic or endothermic. To maintain the temperature constant, what would we do? If we ran the reactor adiabatically, what will be the state of the temperature?
Concept introduction:
A system will either absorbs heat or release heat to the surroundings. Exothermic reaction is the one where the heat gets released and endothermic reaction is the one where the heat gets absorbed. In exothermic, value of
Answer to Problem 9.1P
The reactor should be kept cool, to keep the temperature constant. The given reaction is exothermic. If the reactor is ran adiabatically, the temperature will get raise. The energy needed is low to break the reactant’s molecular bonds.
Explanation of Solution
We have
(c)
To find:
The
Concept introduction:
When chemical reaction transforms the matter, there will be change in enthalpy in a system. This will happen when the products and reactants which involves in the chemical reaction are in their states. This is called standard heat or enthalpy of reaction.
Answer to Problem 9.1P
Thus, the
Explanation of Solution
When we compare the reaction
So, for the reaction
Therefore, for the reaction
(d)
To find:
The
Concept introduction:
When chemical reaction transforms the matter, there will be change in enthalpy in a system. This will happen when the products and reactants which involves in the chemical reaction are in their states. This is called standard heat or enthalpy of reaction.
Answer to Problem 9.1P
Thus, the
Explanation of Solution
When we compare the reaction
So, for the reaction
Therefore, for the reaction
The reactants and products of the two reactions get reversed. So, the sign will also change.
(e)
To estimate:
The enthalpy change and the reactor pressure.
Concept introduction:
When chemical reaction transforms the matter, there will be change in enthalpy in a system. This will happen when the products and reactants which involves in the chemical reaction are in their states. This is called standard heat or enthalpy of reaction.
Answer to Problem 9.1P
Thus, the change in enthalpy at
Explanation of Solution
For the reaction
For 4g of
Converting 1g of
Converting 340g of
The change n enthalpy is,
The reactor pressure is same for reactants and products.
(f)
To explain:
Whether water exists as a vapor at
Concept introduction:
When chemical reaction transforms the matter, there will be change in enthalpy in a system. This will happen when the products and reactants which involves in the chemical reaction are in their states. This is called standard heat or enthalpy of reaction.
Answer to Problem 9.1P
Thus, the water exists as a vapor at
Explanation of Solution
Pure water will vapor at lower temperature. Therefore, water exists as a vapor at
Want to see more full solutions like this?
Chapter 9 Solutions
EBK ELEMENTARY PRINCIPLES OF CHEMICAL P
Additional Science Textbook Solutions
Elements of Chemical Reaction Engineering (5th Edition) (Prentice Hall International Series in the Physical and Chemical Engineering Sciences)
Process Dynamics and Control, 4e
Fundamentals of Heat and Mass Transfer
Starting Out with Programming Logic and Design (4th Edition)
Starting Out with C++: Early Objects (9th Edition)
Starting Out With Visual Basic (8th Edition)
- The enthalpy of combustion of diamond is -395.4 kJ/mol. C s, dia O2 g CO2 g Determine the fH of C s, dia.arrow_forwardWhen one mol of KOH is neutralized by sulfuric acid, q=56 kJ. (This is called the heat of neutralization.) At 23.7C, 25.0 mL of 0.475 M H2SO4 is neutralized by 0.613 M KOH in a coffee-cup calorimeter. Assume that the specific heat of all solutions is 4.18J/gC, that the density of all solutions is 1.00 g/mL, and that volumes are additive. (a) How many mL of KOH is required to neutralize H2SO4? (b) What is the final temperature of the solution?arrow_forwardThe enthalpy change for the following reaction is 393.5 kJ. C(s,graphite)+O2(g)CO2(g) (a) Is energy released from or absorbed by the system in this reaction? (b) What quantities of reactants and products are assumed? (c) Predict the enthalpy change observed when 3.00 g carbon burns in an excess of oxygen.arrow_forward
- A 50-mL solution of a dilute AgNO3 solution is added to 100 mL of a base solution in a coffee-cup calorimeter. As Ag2O(s) precipitates, the temperature of the solution increases from 23.78 C to 25.19 C. Assuming that the mixture has the same specific heat as water and a mass of 150 g, calculate the heat q. Is the precipitation reaction exothermic or endothermic?arrow_forwardA 21.3-mL sample of 0.977 M NaOH is mixed with 29.5 mL of 0.918 M HCl in a coffee-cup calorimeter (see Section 6.6 of your text for a description of a coffee-cup calorimeter). The enthalpy of the reaction, written with the lowest whole-number coefficients, is 55.8 kJ. Both solutions are at 19.6C prior to mixing and reacting. What is the final temperature of the reaction mixture? When solving this problem, assume that no heat is lost from the calorimeter to the surroundings, the density of all solutions is 1.00 g/mL, the specific heat of all solutions is the same as that of water, and volumes are additive.arrow_forwardThe standard enthalpies of formation of KNO3(s) and K2S(s) are 494.6 kJ/mol and 376.6 kJ/mol, respectively. a. Determine the standard enthalpy change for the reaction of black powder according to the balanced equation on the previous page. b. Determine the enthalpy change that occurs when 1.00 g of black powder decomposes according to the stoichiometry of the balanced equation above. (Even though black powder is a mixture, assume that we can designate 1 mol of black powder as consisting of exactly 2 mol of KNO3, 3 mol of C, and 1 mol of S.)arrow_forward
- An industrial process for manufacturing sulfuric acid, H2SO4, uses hydrogen sulfide, H2S, from the purification of natural gas. In the first step of this process, the hydrogen sulfide is burned to obtain sulfur dioxide, SO2. 2H2S(g)+3O2(g)2H2O(l)+2SO2(g);H=1124kJ The density of sulfur dioxide at 25C and 1.00 atm is 2.62 g/L, and the molar heat capacity is 30.2 J/(mol C). (a) How much heat would be evolved in producing 1.00 L of SO2 at 25C and 1.00 atm? (b) Suppose heat from this reaction is used to heat 1.00 L of the SO2 from 25C to 500C for its use in the next step of the process. What percentage of the heat evolved is required for this?arrow_forwardYou did an experiment in which you found that 59.8 J was required to raise the temperature of 25.0 g of ethylene glycol (a compound used as antifreeze in automobile engines) by 1.00 K. Calculate the specific heat capacity of ethylene glycol from these data.arrow_forwardUnder what circumstances is the heat of a process equal to the enthalpy change for the process?arrow_forward
- If nitric acid were sufficiently heated, it can be decomposed into dinitrogen pentoxide and water vapor: 2HNO3(l)N2O5(g)+H2O(g)Hrxn=+176kJ (a) Calculate the enthalpy change that accompanies the reaction of 1.00 kg HNO3 (). (b) Is heat absorbed or released during the course of the reaction?arrow_forwardThe decomposition of ozone, O3, to oxygen, O2, is an exothermic reaction. What is the sign of q? If you were to touch a flask in which ozone is decomposing to oxygen, would you expect the flask to feel warm or cool?arrow_forwardDissolving 6.00 g CaCl2 in 300 mL of water causes the temperature of the solution to increase by 3.43 C. Assume that the specific heat of the solution is 4.18 J/g K and its mass is 306 g. (a) Calculate the enthalpy change when the CaCl2 dissolves. Is the process exothermic or endothermic? (b) Determine H on a molar basis for CaCl2(s)H2OCa2+(aq)+2Cl(aq)arrow_forward
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning