(a)
Interpretation:
: To convert 2 wk to microseconds.
Concept introduction:
The international system of unit (SI units):
Day is represented by the symbol. | d |
Week is represented by the symbol | wk |
Hour is represented by the symbol | h |
Minutes is represented by the symbol | min |
Seconds is represented by the symbol | s |
Microsecond is represented by the symbol | µs |
Meter is represented by the symbol | m |
Feet is represented by the symbol | ft |
Kilometer is represented by the symbol | km |
Kilogram is represented by the symbol | kg |
Pound is represented by the symbol | lb |

Answer to Problem 2.1P
In two weeks there are
Explanation of Solution
In one week there are seven days and in one day there are twenty-four hours. In one hour there are sixty minutes and in one minute there are sixty seconds. In one second there are 106 microseconds.
Convert week to microseconds as follows:
(b)
Interpretation:
To convert 38.1 ft/s to kilometers/h.
Concept introduction:
The international system of unit (SI units):
Day is represented by the symbol | d |
Week is represented by the symbol | wk |
Hour is represented by the symbol | h |
Minutes is represented by the symbol | min |
Seconds is represented by the symbol | s |
Microsecond is represented by the symbol | µs |
Meter is represented by the symbol | m |
Feet is represented by the symbol | ft |
Kilometer is represented by the symbol | km |
Kilogram is represented by the symbol | kg |
Pound is represented by the symbol | lb |

Answer to Problem 2.1P
In
Explanation of Solution
In one day there are twenty-four hours and in one hour there are sixty minutes.
In one pound there are 0.453593 kg and in one feet there are 0.3048 m. Convert meter per day into kilogram to feet per minute into pound as follows:
(c)
Interpretation:
To convert 554 m4/(day.kg) to ft4/(min.lbm ).
Concept introduction:
The international system of unit (SI units):
Day is represented by the symbol | d |
Week is represented by the symbol | wk |
Hour is represented by the symbol | h |
Minutes is represented by the symbol | min |
Seconds is represented by the symbol | s |
Microsecond is represented by the symbol | µs |
Meter is represented by the symbol | m |
Feet is represented by the symbol | ft |
Kilometer is represented by the symbol | km |
Kilogram is represented by the symbol | kg |
Pound is represented by the symbol | lb |

Answer to Problem 2.1P
In
Explanation of Solution
In one day there are twenty-four hours and in one hour there are sixty minutes.
In one pound there are 0.453593 kg and in one feet there are 0.3048 m. Convert meter per day into kilogram to feet per minute into pound as follows:
Want to see more full solutions like this?
Chapter 2 Solutions
EBK ELEMENTARY PRINCIPLES OF CHEMICAL P
- صورة من s94850121arrow_forward11:01 ☑ canvas.ucsd.edu 口 : ... Page 1 > of 2 Q - ZOOM + 4. Consider the two separate sets of measured data for a silt-loam soil measured by Mualem (1976): (1) suction versus water content, and (2) suction versus relative permeability of unsaturated soil, k/ks. Assume that 0s 0.396, 0res = 0.131, and Ks=5.74×10-7 m/s. a. Using the method of least squares in Excel, compute the best-fit values for αNG (kPa¹) and nvg for the van Genuchten (1980) relationship for data set # 1 (assume m = 1-1/nvG). See the example spreadsheet in the homework folder under the files section of Canvas for help in performing this calculation. b. Repeat part (a) and estimate the λ and ac parameters for the Brooks and Corey (1964) SWRC for data set #1. Note that you may need to include an "if" statement at the air entry suction. c. Plot the data for the SWRC versus the fitted van Genuchten (1980) and Brooks and Corey (1964) curves. Which relationship matches the capillary pressure data better (BC or VG)? Explain…arrow_forwardSolve h.w 6arrow_forward
- 1. (20 points) Steam (6000 kg/h, 10 bar, 400°C) is passed through an adiabatic turbine that drives a shaft to generate power. The steam leaving the turbine is at 0.5 bar and passes to a chiller where heat is removed at the rate of 1.25 x 107 kJ/h. Saturated liquid leaves the chiller at 0.5 bar. (a) How much work (kW) is produced in the turbine? (b) What is the quality of steam leaving the turbine? Sometimes, steam produced is 'wet' in nature, and is composed of saturated water vapor and entrained water droplets. In such cases, quality is defined as the fraction of steam that is vapor.arrow_forwardWLV2 | Online teaching and × + w.com/ilrn/takeAssignment/takeCovalentActivity.do?locator-assignment-take A १ eq eq eq [Review Topics] [Referen Draw the structure of 3,3-dimethylbutanal in the window below. • In cases where there is more than one answer, just draw one. 985 + / $ Sn [ ] ChemDoodle ? req Submit Answer Retry Entire Group 8 more group attempts remaining req req Cengage Learning Cengage Technical Supportarrow_forwardA flat-sheet membrane of thickness, L, and surface area, S, separates two fluids (see figure). The concentration on the upstream side is maintained at C_A0 while that on the downstream side is maintained at zero. The membrane is loaded with an immobilized enzyme that converts substrate A to product B according to a zero order reaction mechanism given by:R_A=-k_0"' (d) What is the flux, N_A, at the downstream surface (z=L)? (e) Under what condition will the flux at z=L be equal to zero? (f) At the condition in (e), what can you say about the diffusion time relative to the reaction time?arrow_forward
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The





